cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A236167 Numbers k such that (47^k + 1)/48 is prime.

Original entry on oeis.org

5, 19, 23, 79, 1783, 7681
Offset: 1

Views

Author

Robert Price, Jan 19 2014

Keywords

Comments

a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (47^p + 1)/48 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((47^n+1)/48) \\ Charles R Greathouse IV, Jun 06 2017
    
  • Python
    from sympy import isprime
    def afind(startat=0, limit=10**9):
      pow47 = 47**startat
      for k in range(startat, limit+1):
        q, r = divmod(pow47+1, 48)
        if r == 0 and isprime(q): print(k, end=", ")
        pow47 *= 47
    afind(limit=300) # Michael S. Branicky, May 19 2021

A185230 Numbers n such that (33^n + 1)/34 is prime.

Original entry on oeis.org

5, 67, 157, 12211, 313553
Offset: 1

Views

Author

Robert Price, Aug 29 2013

Keywords

Comments

All terms are prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (33^p + 1)/34 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((33^n+1)/34) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(5) from Paul Bourdelais, Feb 26 2021

A236530 Numbers n such that (48^n + 1)/49 is prime.

Original entry on oeis.org

5, 17, 131, 84589
Offset: 1

Views

Author

Robert Price, Jan 27 2014

Keywords

Comments

All terms are primes.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (48^p + 1)/49 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((48^n+1)/49) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Incorrect first term deleted by Robert Price, Feb 21 2014
Previous Showing 11-13 of 13 results.