cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A128352 Numbers k such that (17^k - 5^k)/12 is prime.

Original entry on oeis.org

5, 7, 17, 23, 43, 71, 239, 733, 1097
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jun 11 2013

Crossrefs

Programs

  • Mathematica
    k=17; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((17^n-5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017

A128353 Numbers k such that (18^k - 5^k)/13 is prime.

Original entry on oeis.org

2, 3, 19, 23, 31, 37, 251, 283, 977, 28687, 32993
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    k=18; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((18^n-5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(10)-a(11) from Robert Price, Aug 10 2013

A128354 Numbers k such that (19^k - 5^k)/14 is prime.

Original entry on oeis.org

5, 17, 31, 59, 373, 643, 2843, 5209, 85009
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jul 22 2013

Crossrefs

Programs

  • Mathematica
    k=19; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((19^n-5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jul 22 2013

A128349 Numbers k such that (13^k - 5^k)/8 is prime.

Original entry on oeis.org

5, 19, 71, 197, 659, 22079, 61949
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Mar 05 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n-5^n)/8) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Mar 05 2013

A128350 Numbers k such that (14^k - 5^k)/9 is prime.

Original entry on oeis.org

2, 151, 673, 709, 2999, 17909, 77213
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Apr 23 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
  • PARI
    is(n)=isprime((14^n-5^n)/9) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
a(6) and a(7) from Robert Price, Apr 23 2013

A128338 Numbers k such that (8^k + 5^k)/13 is prime.

Original entry on oeis.org

7, 19, 167, 173, 223, 281, 21647
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jan 21 2013

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((8^n+5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7) from Robert Price, Jan 21 2013

A128343 Numbers k such that (14^k + 5^k)/19 is prime.

Original entry on oeis.org

3, 7, 17, 79, 17477, 19319, 49549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, May 20 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((14^n+5^n)/19) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(7) from Robert Price, May 20 2013

A187805 Numbers n such that (7^n + 6^n)/13 is prime.

Original entry on oeis.org

3, 53, 83, 487, 743
Offset: 1

Views

Author

Robert Price, Jan 06 2013

Keywords

Comments

All terms are prime.
a(6) > 10^5

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[100000] ], PrimeQ[ (7^# + 6^#)/13 ]& ]
  • PARI
    is(n)=ispseudoprime((7^n+6^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

A227170 Numbers n such that (16^n + 15^n)/31 is prime.

Original entry on oeis.org

3, 5, 13, 1439, 1669, 37691
Offset: 1

Views

Author

Jean-Louis Charton, Jul 03 2013

Keywords

Comments

All terms are prime.
a(7) > 10^5. - Robert Price, Aug 26 2013

Crossrefs

Programs

A247244 Smallest prime p such that (n^p + (n+1)^p)/(2n+1) is prime, or -1 if no such p exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 7, 3, 7, 53, 47, 3, 7, 3, 3, 41, 3, 5, 11, 3, 3, 11, 11, 3, 5, 103, 3, 37, 17, 7, 13, 37, 3, 269, 17, 5, 17, 3, 5, 139, 3, 11, 78697, 5, 17, 3671, 13, 491, 5, 3, 31, 43, 7, 3, 7, 2633, 3, 7, 3, 5, 349, 3, 41, 31, 5, 3, 7, 127, 3, 19, 3, 11, 19, 101, 3, 5, 3, 3
Offset: 1

Views

Author

Eric Chen, Nov 28 2014

Keywords

Comments

All terms are odd primes.
a(79) > 10000, if it exists.
a(80)..a(93) = {3, 7, 13, 7, 19, 31, 13, 163, 797, 3, 3, 11, 13, 5}, a(95)..a(112) = {5, 2657, 19, 787, 3, 17, 3, 7, 11, 1009, 3, 61, 53, 2371, 5, 3, 3, 11}, a(114)..a(126) = {103, 461, 7, 3, 13, 3, 7, 5, 31, 41, 23, 41, 587}, a(128)..a(132) = {7, 13, 37, 3, 23}, a(n) is currently unknown for n = {79, 94, 113, 127, 133, ...} (see the status file under Links).

Examples

			a(10) = 53 because (10^p + 11^p)/21 is composite for all p < 53 and prime for p = 53.
		

Crossrefs

Programs

  • Mathematica
    lmt = 4200; f[n_] := Block[{p = 2}, While[p < lmt && !PrimeQ[((n + 1)^p + n^p)/(2n + 1)], p = NextPrime@ p]; If[p > lmt, 0, p]]; Do[Print[{n, f[n] // Timing}], {n, 1000}] (* Robert G. Wilson v, Dec 01 2014 *)
  • PARI
    a(n)=forprime(p=3, , if(ispseudoprime((n^p+(n+1)^p)/(2*n+1)), return(p)))

Formula

a(n) = 3 if and only if n^2 + n + 1 is a prime (A002384).

Extensions

a(43) from Aurelien Gibier, Nov 27 2023
Previous Showing 11-20 of 26 results. Next