cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A128352 Numbers k such that (17^k - 5^k)/12 is prime.

Original entry on oeis.org

5, 7, 17, 23, 43, 71, 239, 733, 1097
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jun 11 2013

Crossrefs

Programs

  • Mathematica
    k=17; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((17^n-5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017

A128353 Numbers k such that (18^k - 5^k)/13 is prime.

Original entry on oeis.org

2, 3, 19, 23, 31, 37, 251, 283, 977, 28687, 32993
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    k=18; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((18^n-5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(10)-a(11) from Robert Price, Aug 10 2013

A128354 Numbers k such that (19^k - 5^k)/14 is prime.

Original entry on oeis.org

5, 17, 31, 59, 373, 643, 2843, 5209, 85009
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jul 22 2013

Crossrefs

Programs

  • Mathematica
    k=19; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((19^n-5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jul 22 2013

A128349 Numbers k such that (13^k - 5^k)/8 is prime.

Original entry on oeis.org

5, 19, 71, 197, 659, 22079, 61949
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Mar 05 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n-5^n)/8) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Mar 05 2013

A128350 Numbers k such that (14^k - 5^k)/9 is prime.

Original entry on oeis.org

2, 151, 673, 709, 2999, 17909, 77213
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Apr 23 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
  • PARI
    is(n)=isprime((14^n-5^n)/9) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
a(6) and a(7) from Robert Price, Apr 23 2013

A128338 Numbers k such that (8^k + 5^k)/13 is prime.

Original entry on oeis.org

7, 19, 167, 173, 223, 281, 21647
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jan 21 2013

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((8^n+5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7) from Robert Price, Jan 21 2013

A187819 Numbers k such that (9^k + 8^k)/17 is prime.

Original entry on oeis.org

3, 7, 13, 19, 307, 619, 2089, 7297, 75571, 76103, 98897
Offset: 1

Views

Author

Robert Price, Dec 26 2012

Keywords

Comments

All terms are prime.
a(12) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (9^# + 8^#)/17 ]& ]
  • PARI
    is(n)=isprime((9^n+8^n)/17) \\ Charles R Greathouse IV, Feb 17 2017

A217095 Numbers n such that (10^n + 9^n)/19 is prime.

Original entry on oeis.org

7, 67, 73, 1091, 1483, 10937
Offset: 1

Views

Author

Robert Price, Feb 17 2013

Keywords

Comments

The numbers n themselves (7, 67, 73, ...) are also prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (10^# + 9^#)/19 ]& ]
  • PARI
    is(n)=isprime((10^n+9^n)/19) \\ Charles R Greathouse IV, Feb 17 2017

A128343 Numbers k such that (14^k + 5^k)/19 is prime.

Original entry on oeis.org

3, 7, 17, 79, 17477, 19319, 49549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, May 20 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((14^n+5^n)/19) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(7) from Robert Price, May 20 2013

A211409 Numbers n such that (9^n + 4^n)/13 is prime.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 41, 53, 109, 167, 2207, 3623, 5059, 5471, 7949, 21211, 32993, 60251
Offset: 1

Views

Author

Robert Price, Feb 09 2013

Keywords

Comments

All terms are prime.
The next element, a(19), is greater than 10^5.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[1, 100000] ], PrimeQ[ (9^# + 4^#)/13 ]& ]
  • PARI
    is(n)=ispseudoprime((9^n+4^n)/13) \\ Charles R Greathouse IV, Jun 13 2017
Previous Showing 11-20 of 21 results. Next