cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A380929 Numbers k such that A380845(k) > 2*k.

Original entry on oeis.org

36, 72, 84, 140, 144, 168, 180, 264, 270, 280, 288, 300, 336, 360, 372, 392, 450, 520, 528, 532, 540, 558, 560, 576, 594, 600, 612, 620, 672, 720, 744, 756, 780, 784, 840, 900, 930, 1036, 1040, 1050, 1056, 1064, 1068, 1080, 1092, 1116, 1120, 1134, 1152, 1170, 1180, 1188, 1200
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Analogous to abundant numbers (A005101) with A380845 instead of A000203.

Examples

			36 is a term since A380845(36) = 84 > 2 * 36 = 72.
		

Crossrefs

Subsequence of A005101.
Subsequences: A380847, A380848, A380930, A380931.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; Select[Range[1200], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}

A306983 Infinitary pseudoperfect numbers: numbers n equal to the sum of a subset of their proper infinitary divisors.

Original entry on oeis.org

6, 24, 30, 40, 42, 54, 56, 60, 66, 72, 78, 88, 90, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498, 504
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2019

Keywords

Comments

Subsequence of A005835.

Crossrefs

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort@Flatten@Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; s = {}; Do[d = Most[idivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[s, n]], {n, 2, 1000}]; s

A323344 Numbers k whose infinitary divisors have an even sum which is larger than 2k, but they cannot be partitioned into two disjoint parts whose sums are equal.

Original entry on oeis.org

2394, 7544, 10184, 1452330, 2154584, 5021912, 5747994, 5771934, 5786298, 5800662, 5834178, 5843754, 5858118, 5886846, 5905998, 5920362, 5929938, 5992182, 6035274, 6059214, 6078366, 6087942, 6102306, 6107094, 6121458, 6174126, 6202854, 6207642, 6245946, 6265098
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The infinitary version of A171641.

Crossrefs

Programs

  • Mathematica
    infdivs[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[n_] := If[n == 1, 1, Times @@ (fun @@@ FactorInteger[n])]; seq={}; Do[s=isigma[n]; If[OddQ[s] || s<=2n, Continue[]]; div = infdivs[n]; If[Coefficient[Times @@ (1 + x^div) // Expand, x, s/2] == 0, AppendTo[seq, n]], {n, 1, 100000}]; seq (* after Michael De Vlieger at A077609 *)

A335197 Infinitary Zumkeller numbers: numbers whose set of infinitary divisors can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

6, 24, 30, 40, 42, 54, 56, 60, 66, 70, 72, 78, 88, 90, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498, 504
Offset: 1

Views

Author

Amiram Eldar, May 26 2020

Keywords

Examples

			6 is a term since its set of infinitary divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets, {1, 2, 3} and {6}, whose sum is equal: 1 + 2 + 3 = 6.
		

Crossrefs

The infinitary version of A083207.
Subsequence of A129656.

Programs

  • Mathematica
    infdivs[n_] := If[n == 1, {1}, Sort @ Flatten @ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; infZumQ[n_] := Module[{d = infdivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; Select[Range[500], infZumQ] (* after Michael De Vlieger at A077609 *)

A333928 Recursive abundant numbers: numbers k such that A333926(k) > 2*k.

Original entry on oeis.org

12, 18, 20, 30, 36, 42, 60, 66, 70, 78, 84, 90, 100, 102, 108, 114, 120, 126, 132, 138, 140, 144, 150, 156, 168, 174, 180, 186, 196, 198, 204, 210, 220, 222, 228, 234, 240, 246, 252, 258, 260, 270, 276, 282, 294, 300, 306, 308, 318, 324, 330, 336, 340, 342, 348
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Examples

			12 is a term since A333926(12) = 28 > 2 * 12.
		

Crossrefs

Analogous sequences: A005101, A034683 (unitary), A064597 (nonunitary), A129575 (exponential), A129656 (infinitary), A292982 (bi-unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[350], recDivSum[#] > 2*# &]

A334901 Infinitary practical numbers: numbers m such that every number 1 <= k <= isigma(m) is a sum of distinct infinitary divisors of m, where isigma is A049417.

Original entry on oeis.org

1, 2, 6, 8, 24, 30, 40, 42, 54, 56, 66, 72, 78, 88, 104, 120, 128, 168, 210, 216, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 440, 456, 462, 480, 504, 510, 520, 546, 552, 570, 594, 600, 616, 640, 672, 680, 690, 696, 702, 714, 728, 744, 750, 760, 792, 798
Offset: 1

Views

Author

Amiram Eldar, May 16 2020

Keywords

Comments

Includes the powers of 2 of the form 2^(2^k - 1) for k = 0, 1, ... (A058891). The other terms are a subset of infinitary abundant numbers (A129656) and infinitary pseudoperfect numbers (A306983).

Crossrefs

The infinitary version of A005153.

Programs

  • Mathematica
    bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], ?(# == 1 &)] // Flatten); f[p, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; Select[Range[1000], infPracQ]

A334974 Infinitary admirable numbers: numbers k such that there is a proper infinitary divisor d of k such that isigma(k) - 2*d = 2*k, where isigma is the sum of infinitary divisors function (A049417).

Original entry on oeis.org

24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 96, 102, 104, 114, 120, 138, 150, 174, 186, 222, 246, 258, 270, 282, 294, 318, 354, 360, 366, 402, 420, 426, 438, 474, 486, 498, 534, 540, 582, 606, 618, 630, 642, 654, 660, 678, 726, 762, 780, 786, 822, 834, 894, 906, 942
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper infinitary divisors, with one of them taken with a minus sign.
Admirable numbers (A111592) whose number of divisors is a power of 2 (A036537) are also infinitary admirable numbers, since all of their divisors are infinitary. Terms with number of divisors that is not a power of 2 are 96, 150, 294, 360, 420, 486, 540, 630, 660, 726, 780, 960, 990, ...

Examples

			150 is in the sequence since 150 = 1 + 2 + 3 - 6 + 25 + 50 + 75 is the sum of its proper infinitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

The infinitary version of A111592.
Subsequence of A129656.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1000], infAdmQ]

A357605 Numbers k such that A162296(k) > 2*k.

Original entry on oeis.org

36, 48, 72, 80, 96, 108, 120, 144, 160, 162, 168, 180, 192, 200, 216, 224, 240, 252, 264, 270, 280, 288, 300, 312, 320, 324, 336, 352, 360, 378, 384, 392, 396, 400, 408, 416, 432, 448, 450, 456, 468, 480, 486, 500, 504, 528, 540, 552, 560, 576, 588, 594, 600, 612
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

The least odd term is a(470) = A357607(1) = 4725.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 5, 92, 1011, 10160, 102125, 1022881, 10231151, 102249758, 1022781199, 10229781638, ... . Apparently, the asymptotic density of this sequence exists and equals 0.102... .
An analog of abundant numbers, in which the divisor sum is restricted to nonsquarefree divisors. - Peter Munn, Oct 26 2022

Examples

			36 is a term since A162296(36) = 79 > 2*36.
		

Crossrefs

Cf. A162296.
Subsequence of A005101 and A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 1000], q]

A300664 Infinitary 3-abundant numbers: numbers n such that isigma(n) >= 3n, where isigma is the sum of infinitary divisors of n (A049417).

Original entry on oeis.org

120, 840, 1080, 1320, 1512, 1560, 1848, 1890, 1920, 2040, 2184, 2280, 2376, 2688, 2760, 2856, 3000, 3192, 3480, 3720, 4440, 4920, 5160, 5640, 5880, 6360, 7080, 7320, 7560, 8040, 8520, 8760, 9240, 9480, 9720, 9960, 10680, 10920, 11640, 11880, 12120, 12360
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2018

Keywords

Comments

Analogous to 3-abundant numbers (A023197) with isigma (A049417) instead of sigma (A000203).

Examples

			840 is in the sequence since isigma(840) = 2880 > 3 * 840.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, #]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer ? Positive] := Module[{factors = First /@ FactorInteger[n], d = Divisors[n]}, d[[Flatten[ Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][#, Last[#]]] & /@ Transpose[ Last /@ ExponentList[#, factors] & /@ d]], ?(And @@ # &), {1}]]]]]; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; Infinitary3AbundantNumberQ[k_] :=  If[properinfinitarydivisorsum[k] >= 2 k, True, False]; Select[Range[15000], Infinitary3AbundantNumberQ[#] &] (* after Ant King at A129656 *)

A307820 The number of infinitary abundant numbers below 10^n.

Original entry on oeis.org

0, 12, 114, 1270, 12518, 125634, 1257749, 12570993, 125716733, 1256921422, 12570417639
Offset: 1

Views

Author

Amiram Eldar, Apr 30 2019

Keywords

Examples

			Below 10^2 there are 12 infinitary abundant numbers, 24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, and 96, thus a(2) = 12.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n];  c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ isigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq

Formula

Conjecture: Lim_{n->oo} a(n)/10^n = 0.125... is the density of infinitary abundant numbers.

Extensions

a(11) from Amiram Eldar, Sep 09 2022
Previous Showing 11-20 of 27 results. Next