A131192 Numbers n >= 0 such that d(n) = (n^1 + 1)*(n^2 + 2)*...*(n^26 + 26) / 26! is nonintegral.
7, 11, 18, 24, 29, 37, 40, 50, 51, 62, 73, 76, 84, 89, 95, 102, 106, 115, 128, 139, 141, 150, 154, 161, 167, 172, 180, 183, 193, 194, 205, 206, 216, 219, 227, 245, 249, 258, 260, 271, 282, 284, 293, 297, 304, 310, 315, 323, 326, 336, 337, 348, 349, 362, 370, 375, 381, 388, 392, 403, 414, 425, 427, 436
Offset: 1
Keywords
Programs
-
Maple
d:=proc(n) options operator, arrow: (product(n^j+j,j=1..26))/factorial(26) end proc: a:=proc(n) if type(d(n), integer) = false then n else end if end proc; seq(a(n),n=1..300); # Emeric Deutsch, Oct 24 2007
Extensions
Initial terms were calculated by Peter J. C. Moses; see comment in A129995
More terms from Emeric Deutsch, Oct 24 2007
More terms from Max Alekseyev, Feb 02 2015
Comments