cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A176203 Triangle read by rows: T(n, k) = 16*binomial(n, k) - 15.

Original entry on oeis.org

1, 1, 1, 1, 17, 1, 1, 33, 33, 1, 1, 49, 81, 49, 1, 1, 65, 145, 145, 65, 1, 1, 81, 225, 305, 225, 81, 1, 1, 97, 321, 545, 545, 321, 97, 1, 1, 113, 433, 881, 1105, 881, 433, 113, 1, 1, 129, 561, 1329, 2001, 2001, 1329, 561, 129, 1, 1, 145, 705, 1905, 3345, 4017, 3345, 1905, 705, 145, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 11 2010

Keywords

Comments

This sequence belongs to the class defined by T(n, m, q) = 2*T(n, m, q-1) - 1. The first few q values gives the sequences: A007318 (q=0), A109128 (q=1), A131061 (q=2), A168625 (q=3), this sequence (q=4).
Row sums are: {1, 2, 19, 68, 181, 422, 919, 1928, 3961, 8042, 16219, ...}.
Former title: A recursive symmetrical triangular sequence:q=4: t(n, m, q) = 2*t(n, m, q-1) - 1. - G. C. Greubel, Mar 12 2020

Examples

			Triangle begins as:
  1;
  1,   1;
  1,  17,   1;
  1,  33,  33,    1;
  1,  49,  81,   49,    1;
  1,  65, 145,  145,   65,    1;
  1,  81, 225,  305,  225,   81,    1;
  1,  97, 321,  545,  545,  321,   97,    1;
  1, 113, 433,  881, 1105,  881,  433,  113,   1;
  1, 129, 561, 1329, 2001, 2001, 1329,  561, 129,   1;
  1, 145, 705, 1905, 3345, 4017, 3345, 1905, 705, 145, 1;
		

Crossrefs

Sequence m*binomial(n,k) - (m-1): A007318 (m=1), this sequence (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), A168625 (m=8), this sequence (m=16).

Programs

  • Magma
    [16*Binomial(n, k) -15: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A176203:= (n,k) -> 16*binomial(n, k) -15; seq(seq(A176203(n, k), k = 0..n), n = 0.. 12); # G. C. Greubel, Mar 12 2020
  • Mathematica
    T[n_, m_, q]:= 2^q*(Binomial[n, m] -1) + 1; Table[T[n,m,4], {n,0,12}, {m,0,n} ]//Flatten (* modified by G. C. Greubel, Mar 12 2020 *)
    Table[16*Binomial[n, k] -15, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[16*binomial(n, k) -15 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020

Formula

T(n, m, q) = 2*T(n, m, q-1) - 1, with T(n, m, 0) = binomial(n, m) and q = 4.
From G. C. Greubel, Mar 12 2020: (Start)
T(n, k, q) = 2^q * binomial(n, k) - (2^q - 1), with q = 4.
Sum_{k=0..n} T(n, k, q) = 2^(n + q) - (n + 1)*(2^q - 1) (row sums). (End)

Extensions

Edited by G. C. Greubel, Mar 12 2020
Previous Showing 11-11 of 11 results.