A153491
Triangle T(n,m)= 11*binomial(n,k) - 8 read by rows, 0<=k<=n.
Original entry on oeis.org
3, 3, 3, 3, 14, 3, 3, 25, 25, 3, 3, 36, 58, 36, 3, 3, 47, 102, 102, 47, 3, 3, 58, 157, 212, 157, 58, 3, 3, 69, 223, 377, 377, 223, 69, 3, 3, 80, 300, 608, 762, 608, 300, 80, 3, 3, 91, 388, 916, 1378, 1378, 916, 388, 91, 3, 3, 102, 487, 1312
Offset: 0
3;
3,3;
3,14,3;
3,25,25,3;
3,36,58,36,3;
3,47,102,102,47,3;
3,58,157,212,157,58,3;
3,69,223,377,377,223,69,3;
3,80,300,608,762,608,300,80,3;
-
T[n_, m_] = If[n == 1, 3, If[m == 0 || m == n, 3, 11*Binomial[n, k] - 8]]
a1 = Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}];
Flatten[a1]
Definition and terms regularized. -
R. J. Mathar, Jul 11 2012
A176203
Triangle read by rows: T(n, k) = 16*binomial(n, k) - 15.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 33, 33, 1, 1, 49, 81, 49, 1, 1, 65, 145, 145, 65, 1, 1, 81, 225, 305, 225, 81, 1, 1, 97, 321, 545, 545, 321, 97, 1, 1, 113, 433, 881, 1105, 881, 433, 113, 1, 1, 129, 561, 1329, 2001, 2001, 1329, 561, 129, 1, 1, 145, 705, 1905, 3345, 4017, 3345, 1905, 705, 145, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 33, 33, 1;
1, 49, 81, 49, 1;
1, 65, 145, 145, 65, 1;
1, 81, 225, 305, 225, 81, 1;
1, 97, 321, 545, 545, 321, 97, 1;
1, 113, 433, 881, 1105, 881, 433, 113, 1;
1, 129, 561, 1329, 2001, 2001, 1329, 561, 129, 1;
1, 145, 705, 1905, 3345, 4017, 3345, 1905, 705, 145, 1;
-
[16*Binomial(n, k) -15: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 12 2020
-
A176203:= (n,k) -> 16*binomial(n, k) -15; seq(seq(A176203(n, k), k = 0..n), n = 0.. 12); # G. C. Greubel, Mar 12 2020
-
T[n_, m_, q]:= 2^q*(Binomial[n, m] -1) + 1; Table[T[n,m,4], {n,0,12}, {m,0,n} ]//Flatten (* modified by G. C. Greubel, Mar 12 2020 *)
Table[16*Binomial[n, k] -15, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
-
[[16*binomial(n, k) -15 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020
Comments