cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A302710 a(n) = trinomial(2*n, 4) = (1/6)*n*(2*n - 1)*(2*n^2 + 7*n - 3).

Original entry on oeis.org

0, 1, 19, 90, 266, 615, 1221, 2184, 3620, 5661, 8455, 12166, 16974, 23075, 30681, 40020, 51336, 64889, 80955, 99826, 121810, 147231, 176429, 209760, 247596, 290325, 338351, 392094, 451990, 518491, 592065, 673196, 762384, 860145, 967011, 1083530, 1210266, 1347799, 1496725, 1657656, 1831220
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2018

Keywords

Comments

The irregular triangle of trinomial coefficients is given in A027907 with the Comtet reference.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)

Crossrefs

Cf. A014105 (k=2), A027907, A131423 (k=3), A127672, A302709.

Programs

  • Magma
    [(1/6)*n*(2*n-1)*(2*n^2+7*n-3): n in [0..40]]; // Vincenzo Librandi, Apr 28 2018
    
  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 19, 90, 266}, 41] (* Vincenzo Librandi, Feb 28 2018 *)
  • PARI
    a(n) = n*(2*n-1)*(2*n^2+7*n-3)/6; \\ Altug Alkan, May 01 2018
    
  • PARI
    a(n) = polcoeff((1 + x + x^2)^(2*n), 4); \\ Michel Marcus, May 04 2018

Formula

a(n) = A027907(2*n, 4), n >= 0. a(n) = A027907(2*n, 4*(n-1)), for n >= 1 (symmetry).
a(n) = binomial(2*n, 2) + (2*n)*binomial(2*n-1, 2) + binomial(2*n, 4)(from the trinomial definition) = (1/6)*n*(2*n - 1)*(2*n^2 + 7*n - 3).
G.f.: x*(1 + 14*x + 5*x^2 - 4*x^3)/(1 - x)^5.
a(n) = (1/Pi)*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n)*R(4*(n-2), x), n >= 0, with the R polynomial coefficients given in A127672. Note that R(-n, x) = R(n, x) [Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 4, rewritten with x = 2*cos(phi)]. For the odd numbered rows see A302709.
Previous Showing 11-11 of 11 results.