cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A385578 Decimal expansion of the volume of a parabiaugmented hexagonal prism with unit edge.

Original entry on oeis.org

3, 0, 6, 9, 4, 8, 0, 7, 3, 2, 1, 4, 4, 3, 4, 7, 6, 2, 3, 2, 2, 5, 0, 6, 5, 7, 5, 3, 6, 6, 2, 0, 4, 1, 2, 4, 3, 2, 7, 0, 7, 6, 5, 1, 7, 2, 5, 0, 7, 8, 8, 6, 9, 6, 6, 4, 7, 5, 9, 3, 7, 0, 4, 8, 5, 0, 8, 1, 4, 3, 6, 8, 4, 8, 5, 0, 5, 6, 9, 0, 6, 8, 5, 7, 1, 8, 4, 8, 4, 5
Offset: 1

Views

Author

Paolo Xausa, Jul 04 2025

Keywords

Comments

The parabiaugmented hexagonal prism is Johnson solid J_55.
Also the volume of a metabiaugmented hexagonal prism (Johnson solid J_56) with unit edge.

Examples

			3.0694807321443476232250657536620412432707651725...
		

Crossrefs

Cf. A385257 (surface area + 2).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[8] + 9*Sqrt[3])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J55", "Volume"], 10, 100]]

Formula

Equals (2*sqrt(2) + 9*sqrt(3))/6 = (A010466 + 9*A002194)/6 = A131594 + A104956.
Equals the largest root of 1296*x^4 - 18072*x^2 + 55225.

A386459 Decimal expansion of the volume of an augmented truncated cube with unit edges.

Original entry on oeis.org

1, 5, 5, 4, 2, 4, 7, 2, 3, 3, 2, 6, 5, 6, 5, 0, 6, 9, 2, 6, 9, 4, 2, 3, 3, 9, 8, 6, 2, 4, 5, 1, 7, 2, 3, 0, 8, 5, 7, 0, 4, 9, 1, 6, 6, 6, 8, 6, 7, 7, 0, 5, 6, 3, 9, 0, 2, 7, 5, 6, 2, 5, 2, 6, 9, 2, 8, 3, 9, 0, 6, 5, 5, 1, 7, 9, 7, 9, 0, 4, 2, 0, 7, 2, 0, 2, 0, 6, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Jul 22 2025

Keywords

Comments

The augmented truncated cube is Johnson solid J_66.

Examples

			15.5424723326565069269423398624517230857049...
		

Crossrefs

Cf. A386460 (surface area).

Programs

  • Mathematica
    First[RealDigits[8 + 16*Sqrt[2]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J66", "Volume"], 10, 100]]

Formula

Equals 8 + 16*sqrt(2)/3 = 8 + 16*A131594.
Equals A377299 + A179587.
Equals the largest root of 9*x^2 - 144*x + 64.

A386854 Decimal expansion of the largest dihedral angle, in radians, in an elongated triangular pyramid (Johnson solid J_7).

Original entry on oeis.org

2, 8, 0, 1, 7, 5, 5, 7, 4, 4, 1, 3, 5, 6, 7, 1, 3, 0, 1, 3, 6, 6, 2, 5, 0, 8, 6, 9, 8, 8, 7, 7, 3, 8, 8, 1, 7, 8, 0, 8, 9, 2, 4, 7, 0, 9, 0, 4, 2, 6, 4, 7, 7, 4, 9, 5, 4, 3, 0, 2, 0, 6, 2, 9, 8, 1, 7, 9, 0, 0, 5, 1, 7, 6, 2, 1, 3, 6, 0, 5, 8, 7, 1, 6, 7, 2, 6, 9, 0, 3
Offset: 1

Views

Author

Paolo Xausa, Aug 06 2025

Keywords

Comments

Also the largest dihedral angle, in radians, in an elongated triangular bipyramid, elongated pentagonal bipyramid, elongated triangular orthobicupola and elongated triangular gyrobicupola (Johnson solids J_14, J_18, J_35 and J_36, respectively).

Examples

			2.80175574413567130136625086988773881780892470904...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[8]/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J7", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(-sqrt(8)/3) \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals arccos(-sqrt(8)/3) = arccos(-A010466/3) = arccos(-2*A131594).

A353049 Decimal expansion of 8*sqrt(2) / 3.

Original entry on oeis.org

3, 7, 7, 1, 2, 3, 6, 1, 6, 6, 3, 2, 8, 2, 5, 3, 4, 6, 3, 4, 7, 1, 1, 6, 9, 9, 3, 1, 2, 2, 5, 8, 6, 1, 5, 4, 2, 8, 5, 2, 4, 5, 8, 3, 3, 4, 3, 3, 8, 5, 2, 8, 1, 9, 5, 1, 3, 7, 8, 1, 2, 6, 3, 4, 6, 4, 1, 9, 5, 3, 2, 7, 5, 8, 9, 8, 9, 5, 2, 1, 0, 3, 6, 0, 1, 0, 3, 3, 4, 2, 4, 8, 7, 3, 7, 1, 0, 8
Offset: 1

Views

Author

Bernard Schott, Apr 20 2022

Keywords

Comments

8*sqrt(2) / (3*a) is the maximum curvature of the Folium of Descartes x^3 + y^3 - 3*a*x*y = 0, occurring at the point M of coordinates (3a/2, 3a/2). The corresponding minimum radius of curvature is (3*sqrt(2))*a/16.
This point M is at the intersection of the first bisector with the loop, distinct from O (see curves).

Examples

			3.771236166328253463471169931225...
		

Crossrefs

Cf. A295709 (arc length of the loop of the Folium of Descartes).

Programs

  • Maple
    evalf(8*sqrt(2)/3,100);
  • Mathematica
    RealDigits[8*Sqrt[2]/3, 10, 100][[1]] (* Amiram Eldar, Apr 20 2022 *)
  • PARI
    8*sqrt(2)/3 \\ Michel Marcus, Apr 20 2022

Formula

Equals 8*A131594.
Previous Showing 11-14 of 14 results.