0, 1, -1, 4, 1, -4, 9, 5, -1, -9, 16, 11, 4, -5, -16, 25, 19, 11, 1, -11, -25, 36, 29, 20, 9, -4, -19, -36, 49, 41, 31, 19, 5, -11, -29, -49, 64, 55, 44, 31, 16, -1, -20, -41, -64, 81, 71, 59, 45, 29, 11, -9, -31, -55, -81, 100, 89, 76, 61, 44, 25, 4, -19, -44, -71, -100
Offset: 0
The array N1(a, b) begins:
a \ b 0 1 2 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------
0: 0 -1 -4 -9 -16 -25 -36 -49 -64 -81 -100 ...
1: 1 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 ...
2: 4 5 4 1 -4 -11 -20 -31 -44 -59 -76 ...
3: 9 11 11 9 5 -1 -9 -19 -31 -45 -61 ...
4: 16 19 20 19 16 11 4 -5 -16 -29 -44 ...
5: 25 29 31 31 29 25 19 11 1 -11 -25 ...
6: 36 41 44 45 44 41 36 29 20 9 -4 ...
7: 49 55 59 61 61 59 55 49 41 31 19 ...
8: 64 71 76 79 80 79 76 71 64 55 44 ...
9: 81 89 95 99 101 101 99 95 89 81 71 ...
10: 100 109 116 121 124 125 124 121 116 109 100 ...
...
-----------------------------------------------------
The Triangle T(n, k) begins:
n \ k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 -1
2: 4 1 -4
3: 9 5 -1 -9
4: 16 11 4 -5 -16
5: 25 19 11 1 -11 -25
6: 36 29 20 9 -4 -19 -36
7: 49 41 31 19 5 -11 -29 -49
8: 64 55 44 31 16 -1 -20 -41 -64
9: 81 71 59 45 29 11 -9 -31 -55 -81
10: 100 89 76 61 44 25 4 -19 -44 -71 -100
...
------------------------------------------------
Units from norm N(a, b) = N1(a, b) = +1 or -1, for a >= 0 and b >= 0: +(a, b) or -(a, b), with (a, b) = (0, 1), (1, 0), (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), ...; cases + or - phi^n, n >= 0.
Some primes im Q(phi) from |N1(a, b)| = q, with q a prime in Q:
a = 1: (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 9), (1, 10), ...
a = 2: (2, 1), (2, 5), (2, 7), (2, 9), ...
a = 3: (3, 1), (3, 2), (3, 4), (3, 7), (3, 8), (3, 10), ...
a = 4: (4, 1), (4, 3), (4, 5), (4, 7), (4, 9), ...
a = 5: (5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (5, 7), (5, 9), ...
a = 6: (6, 1), (6, 5), (6, 7), ...
a = 7: (7, 2), (7, 3), (7, 4), (7, 5), (7, 8), (7, 9), (7, 10), ...
a = 8: (8, 1), (8, 3), (8, 5), (8, 7), ...
a = 9: (9, 1), (9, 4), (9, 5), (9, 8), (9, 10), ...
a = 10: (10, 1), (10, 9) ...
...
Comments