A131348 Sum of squares of prime quadruplets.
364, 940, 44140, 152140, 2722540, 8820940, 14062540, 17388940, 42380140, 48024940, 127916140, 356076940, 676520140, 979064140, 990360940, 1032336940, 1302488140, 1431108940, 1509322540, 1766520940, 1984702540, 2561372140
Offset: 1
Examples
a(1) = 364 = 5^2 + 7^2 + 11^2 + 13^2. a(2) = 940 = 11^2 + 13^2 + 17^2 + 19^2. a(3) = 44140 = 101^2 + (103)^2 + (107)^2 + (109)^2 because 101, 103, 107, 109 are a prime quadruplet.
Programs
-
Mathematica
Total[#^2]&/@Select[Partition[Prime[Range[3000]],4,1],MatchQ[#,{#[[1]],#[[1]]+2,#[[1]]+6,#[[1]]+8}]&] (* Harvey P. Dale, Feb 03 2011 *)
Formula
a(n) = p^2 + (p+2)^2 + (p+6)^2 + (p+8)^2 for p in A007530.
Extensions
Corrected and extended by Harvey P. Dale, Feb 03 2011
Comments