cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A260340 Triangle read by rows: T(n,k) = number of sets of linear n-ads in k variables.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 22, 22, 1, 1, 1, 1, 130, 550, 130, 1, 1, 1, 1, 822, 16700, 16700, 822, 1, 1, 1, 1, 6202, 703297, 3330915, 703297, 6202, 1, 1, 1, 1, 52552, 38135272, 957659906, 957659906, 38135272, 52552, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

T(n,k) is the number of nonequivalent n X n binary matrices with k ones in every row and column up to permutation of rows. - Andrew Howroyd, Apr 18 2020

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,    1;
  1, 1,    1,      1;
  1, 1,    6,      1,       1;
  1, 1,   22,     22,       1,      1;
  1, 1,  130,    550,     130,      1,    1;
  1, 1,  822,  16700,   16700,    822,    1, 1;
  1, 1, 6202, 703297, 3330915, 703297, 6202, 1, 1;
  ...
		

Crossrefs

Columns k=0..4 are A000012, A000012, A002137, A333899, A333900.
Row sums are A333891.

Formula

T(n,k) = T(n,n-k). - Andrew Howroyd, Apr 18 2020

Extensions

Extended to include k=0 and more terms added by Andrew Howroyd, Apr 18 2020

A000516 Number of equivalence classes of n X n matrices over {0,1} with rows and columns summing to 5, where equivalence is defined by row and column permutations. Isomorphism classes of bicolored 5-regular bipartite graphs, where isomorphism cannot exchange the colors.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 4, 51, 3529, 601055, 156473848, 54062069505, 23869437984682, 13186966476208771, 8971034249976338907, 7414924597575224629299, 7360058177440420943520750, 8683626883245180573511018830, 12066478410398147578519948851818, 19585444567548740264243478805318202
Offset: 1

Views

Author

Eric Rogoyski

Keywords

Crossrefs

Column k=5 of A133687.

Extensions

Definition corrected by Brendan McKay, May 28 2006
Offset corrected and terms a(12) and beyond from Andrew Howroyd, Apr 01 2020

A000519 Number of equivalence classes of nonzero regular 0-1 matrices of order n.

Original entry on oeis.org

1, 2, 3, 5, 7, 18, 43, 313, 7525, 846992, 324127859, 403254094631, 1555631972009429, 19731915624463099552, 791773335030637885025287, 107432353216118868234728540267, 47049030539260648478475949282317451, 71364337698829887974206671525372672234854
Offset: 1

Views

Author

Eric Rogoyski

Keywords

Comments

Previous name was: Number of different row sums among Latin squares of order n.
A regular 0-1 matrix has all row sums and column sums equal. Equivalence is defined by independently permuting rows and columns (but not by transposing). - Brendan McKay, Nov 18 2015

Examples

			For n = 4, representatives of the a(4) = 5 classes are
[1 0 0 0]  [1 1 0 0]  [1 1 0 0]  [1 1 1 0]  [1 1 1 1]
[0 1 0 0]  [1 1 0 0]  [0 1 1 0]  [1 1 0 1]  [1 1 1 1]
[0 0 1 0]  [0 0 1 1]  [0 0 1 1]  [1 0 1 1]  [1 1 1 1]
[0 0 0 1]  [0 0 1 1]  [1 0 0 1]  [0 1 1 1]  [1 1 1 1].
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 18*x^6 + 43*x^7 + 313*x^8 + 7525*x^9 + ...
		

Crossrefs

One less than the row sums of A133687.
Cf. A333681.

Formula

a(n) = A333681(n-1). - Andrew Howroyd, Apr 03 2020

Extensions

Description changed, after discussion with Andrew Howroyd, by Brendan McKay, Nov 18 2015
Terms a(12) and beyond from Andrew Howroyd, Apr 03 2020

A333681 Number of non-isomorphic n X n binary matrices with all row and column sums equal up to permutation of rows and columns.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 19, 44, 314, 7526, 846993, 324127860, 403254094632, 1555631972009430, 19731915624463099553, 791773335030637885025288, 107432353216118868234728540268, 47049030539260648478475949282317452, 71364337698829887974206671525372672234855
Offset: 0

Views

Author

Andrew Howroyd, Apr 01 2020

Keywords

Examples

			The a(2) = 3 matrices are:
  [0 0]  [0 1]  [1 1]
  [0 0]  [1 0]  [1 1]
		

Crossrefs

Row sums of A133687.

Formula

a(n) = A000519(n) + 1.

A333740 Number of inequivalent 2n X 2n binary matrices with rows and columns summing to n, where equivalence means permutations of rows or columns.

Original entry on oeis.org

1, 1, 2, 7, 194, 601055, 294494683312, 14584161564179926207, 80055722734531008786502722278, 53505113579082591021525466231199449015539
Offset: 0

Views

Author

Alois P. Heinz, Apr 03 2020

Keywords

Crossrefs

Cf. A133687.

Formula

a(n) = A133687(2n,n).
Previous Showing 11-15 of 15 results.