cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A244321 Permutation of natural numbers: a(1)=1; thereafter, if n is k-th number whose greatest prime factor has an odd index [i.e., n = A244991(k)], a(n) = 2*a(k), otherwise, when n is k-th number whose greatest prime factor has an even index [i.e., n = A244990(1+k)], a(n) = 1+(2*a(k)).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 9, 12, 10, 13, 11, 15, 14, 16, 18, 17, 19, 24, 25, 20, 26, 21, 22, 27, 23, 31, 29, 30, 28, 32, 36, 34, 33, 37, 35, 39, 49, 38, 48, 51, 41, 50, 40, 52, 42, 53, 43, 44, 54, 45, 55, 47, 46, 63, 59, 61, 62, 58, 57, 60, 65, 56, 73, 64, 72, 68, 66, 69
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A244322.
Similar entanglement permutations: A135141, A237427, A243287, A243343, A243345.

Formula

a(1) = 1, and for n > 1, if A244992(n) = 1 [i.e. the greatest prime factor of n has an odd index], a(n) = 2 * A244321(A244989(n)), otherwise, a(n) = 1 + (2 * A244321(A244988(n)-1)).
For all n >= 1, A000035(a(n)) = 1 - A244992(n).

A233280 Permutation of nonnegative integers: a(n) = A003188(A054429(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 11, 10, 14, 15, 13, 12, 16, 17, 19, 18, 22, 23, 21, 20, 28, 29, 31, 30, 26, 27, 25, 24, 32, 33, 35, 34, 38, 39, 37, 36, 44, 45, 47, 46, 42, 43, 41, 40, 56, 57, 59, 58, 62, 63, 61, 60, 52, 53, 55, 54, 50, 51, 49, 48, 64, 65, 67, 66
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2013

Keywords

Comments

This permutation transforms the enumeration system of positive irreducible fractions A071766/A229742 (HCS) into the enumeration system A007305/A047679 (Stern-Brocot), and the enumeration system A245325/A245326 into A162909/A162910 (Bird). - Yosu Yurramendi, Jun 09 2015

Crossrefs

Inverse permutation: A233279.
Similarly constructed permutation pairs: A003188/A006068, A135141/A227413, A232751/A232752, A233275/A233276, A233277/A233278, A193231 (self-inverse).

Programs

  • Python
    from sympy import floor
    def a003188(n): return n^(n>>1)
    def a054429(n): return 1 if n==1 else 2*a054429(floor(n/2)) + 1 - n%2
    def a(n): return 0 if n==0 else a003188(a054429(n)) # Indranil Ghosh, Jun 11 2017
  • R
    maxrow <- 8 # by choice
    a <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)){
    a[2^(m+1)+    k] <- a[2^m+      k] + 2^m
    a[2^(m+1)+2^m+k] <- a[2^(m+1)-1-k] + 2^(m+1)
    }
    a
    # Yosu Yurramendi, Apr 05 2017
    
  • Scheme
    (define (A233280 n) (A003188 (A054429 n)))
    ;; Alternative version, based on entangling even & odd numbers with odious and evil numbers:
    (definec (A233280 n) (cond ((< n 2) n) ((even? n) (A000069 (+ 1 (A233280 (/ n 2))))) (else (A001969 (+ 1 (A233280 (/ (- n 1) 2)))))))
    

Formula

a(n) = A003188(A054429(n)).
a(n) = A063946(A003188(n)).
a(n) = A054429(A154436(n)).
a(0)=0, a(1)=1, and otherwise, a(2n) = A000069(1+a(n)), a(2n+1) = A001969(1+a(n)). [A recurrence based on entangling even & odd numbers with odious and evil numbers]
a(n) = A258746(A180201(n)) = A180201(A117120(n)), n > 0. - Yosu Yurramendi, Apr 10 2017

A243344 a(1) = 1, a(2n) = A013929(a(n)), a(2n+1) = A005117(1+a(n)).

Original entry on oeis.org

1, 4, 2, 12, 6, 8, 3, 32, 19, 18, 10, 24, 13, 9, 5, 84, 53, 50, 31, 49, 30, 27, 15, 63, 38, 36, 21, 25, 14, 16, 7, 220, 138, 136, 86, 128, 82, 81, 51, 126, 79, 80, 47, 72, 42, 44, 23, 162, 103, 99, 62, 96, 59, 54, 34, 64, 39, 40, 22, 45, 26, 20, 11, 564, 365
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This permutation entangles complementary pair odd/even numbers (A005408/A005843) with complementary pair A005117/A013929 (numbers which are squarefree/not squarefree).

Crossrefs

Formula

a(1) = 1, a(2n) = A013929(a(n)), a(2n+1) = A005117(1+a(n)).
For all n, A008966(a(n)) = A000035(n), or equally, mu(a(n)) = n modulo 2, where mu is Moebius mu (A008683). [The same property holds for A088610.]

A243345 a(1)=1; thereafter, if n is k-th squarefree number [i.e., n = A005117(k)], a(n) = 2*a(k-1); otherwise, when n is k-th nonsquarefree number [i.e., n = A013929(k)], a(n) = 2*a(k)+1.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 7, 10, 18, 24, 17, 64, 13, 14, 33, 20, 36, 48, 11, 19, 34, 25, 65, 128, 26, 28, 15, 66, 40, 72, 21, 96, 22, 38, 37, 68, 50, 130, 49, 35, 256, 52, 129, 27, 29, 56, 67, 30, 41, 132, 73, 80, 144, 42, 97, 192, 44, 23, 39, 76, 74, 136, 69, 100
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

Any other fixed points than 1, 2, 6, 9, 135, 147, 914, ... ?
Any other points than 4, 21, 39, 839, 4893, 12884, ... where a(n) = n-1 ?

Crossrefs

Formula

a(1) = 1, and for n>1, if mu(n) = 0, a(n) = 1 + 2*a(A057627(n)), otherwise a(n) = 2*a(A013928(n)), where mu is Moebius mu function (A008683).
For all n > 1, A000035(a(n)+1) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) + 1 modulo 2.

A245701 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = 2*a(n), a(A091242(n)) = 2*a(n)+1, where A014580(n) = binary code for n-th irreducible polynomial over GF(2), A091242(n) = binary code for n-th reducible polynomial over GF(2).

Original entry on oeis.org

1, 2, 4, 3, 5, 9, 8, 7, 11, 19, 6, 17, 10, 15, 23, 39, 13, 35, 18, 21, 31, 47, 79, 27, 16, 71, 37, 43, 63, 95, 14, 159, 55, 33, 143, 75, 22, 87, 127, 191, 38, 29, 319, 111, 67, 287, 12, 151, 45, 175, 255, 383, 77, 59, 34, 639, 223, 135, 20, 575, 30, 25, 303, 91, 351, 511, 46, 767, 155, 119, 69, 1279, 78, 447, 271, 41, 1151, 61, 51
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Crossrefs

Inverse: A245702.
Similar entanglement permutations: A135141, A193231, A237427, A243287, A245703, A245704.

Programs

Formula

a(1) = 1, and for n > 1, if n is in A014580, a(n) = 2*a(A091226(n)), otherwise a(n) = 1 + 2*a(A091245(n)).
As a composition of related permutations:
a(n) = A135141(A245704(n)).
Other identities:
For all n >= 1, 1 - A000035(a(n)) = A091225(n). [Maps binary representations of irreducible GF(2) polynomials (= A014580) to even numbers and the corresponding representations of reducible polynomials to odd numbers].

A267107 "Chebyshev's bat permutation": a(1) = 1, a(A080147(n)) = A080148(a(n)), a(A080148(n)) = A080147(a(n)).

Original entry on oeis.org

1, 3, 2, 7, 6, 5, 4, 16, 13, 14, 12, 11, 9, 10, 35, 8, 29, 31, 30, 26, 23, 25, 21, 27, 22, 20, 24, 74, 17, 19, 18, 62, 67, 66, 15, 65, 54, 57, 51, 58, 55, 56, 45, 48, 43, 59, 50, 44, 53, 47, 39, 152, 49, 37, 41, 42, 38, 40, 46, 144, 130, 32, 139, 137, 36, 34, 33, 118, 136, 129, 128, 113, 121, 28, 108, 122, 125
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Comments

This is a self-inverse permutation of natural numbers.

Crossrefs

Cf. A268393 (record positions), A268394 (record values).
Cf. A267100, A267105, A267106 and also A270193, A270194, A270199, A270201, A270202 for other similarly constructed permutations based on prime distribution biases.

Programs

  • PARI
    allocatemem(2^30);
    default(primelimit,4294965247);
    uplim = 2^20;
    uplim2 = 366824; \\ Very ad hoc.
    v080147 = vector(uplim);
    v080148 = vector(uplim);
    v267097 = vector(uplim);
    v267107 = vector(uplim);
    v267097[1] = 0; c = 0; v47i = 0; v48i = 0; for(n=2, uplim, if((1 == (prime(n)%4)), c++; v47i++; v080147[v47i] = n, v48i++; v080148[v48i] = n); v267097[n] = c; if(!(n%32768),print1(" n=",n)));
    A080147(n) = v080147[n];
    A080148(n) = v080148[n];
    A267097(n) = v267097[n];
    A267098(n) = (n - A267097(n))-1;
    A267107(n) = v267107[n];
    v267107[1] = 1; for(n=2, uplim2, if((1 == (prime(n) % 4)), v267107[n] = A080148(A267107(A267097(n))), v267107[n] = A080147(A267107(A267098(n))));  if(!(n%32768),print1(" n=",n)));
    for(n=1, uplim2, write("b267107.txt", n, " ", A267107(n)));
    
  • Scheme
    ;; With memoization-macro definec
    (definec (A267107 n) (cond ((<= n 1) n) ((= 1 (modulo (A000040 n) 4)) (A080148 (A267107 (A267097 n)))) (else (A080147 (A267107 (A267098 n))))))

Formula

a(1) = 1; and for n > 1, if prime(n) modulo 4 = 1, a(n) = A080148(a(A267097(n))), otherwise a(n) = A080147(a(A267098(n))).

Extensions

Name changed, the old name was "Manta moth permutation" - Antti Karttunen, Dec 10 2019

A269865 Permutation of natural numbers: a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A250469(1+a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 11, 18, 27, 16, 25, 14, 21, 20, 13, 30, 45, 24, 17, 22, 33, 36, 23, 54, 81, 32, 19, 50, 75, 28, 35, 42, 63, 40, 55, 26, 39, 60, 37, 90, 135, 48, 49, 34, 51, 44, 29, 66, 99, 72, 41, 46, 69, 108, 91, 162, 243, 64, 85, 38, 57, 100, 125, 150, 225, 56, 31, 70, 105, 84, 47, 126, 189, 80, 43, 110, 165, 52
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2016

Keywords

Comments

This sequence can be represented as a binary tree. When the parent contains n, the left hand child contains 2n, while the value of right hand child is obtained by applying A250469(1+n):
1
|
................../ \..................
2 3
4......../ \........5 6......../ \........9
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
8 7 10 15 12 11 18 27
16 25 14 21 20 13 30 45 24 17 22 33 36 23 54 81
etc.
Note how all nodes with odd n have a right hand child with value 3n.

Crossrefs

Inverse: A269866.
Cf. A250469.
Related or similar permutations: A269359, A269863, A269864, A269867, A246375, A249814, A252755, A270195.

Formula

a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A250469(1+a(n)).

A255422 Permutation of natural numbers: a(1) = 1 and for n > 1, if n is k-th ludic number larger than 1 [i.e., n = A003309(k+1)], a(n) = nthprime(a(k)), otherwise, when n is k-th nonludic number [i.e., n = A192607(k)], a(n) = nthcomposite(a(k)), where nthcomposite = A002808, nthprime = A000040.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 19, 25, 23, 26, 27, 28, 29, 32, 33, 34, 36, 30, 38, 35, 31, 39, 40, 42, 37, 44, 41, 48, 49, 50, 43, 52, 45, 55, 51, 46, 47, 56, 57, 60, 54, 63, 58, 68, 53, 69, 70, 62, 74, 64, 59, 77, 72, 65, 61, 66, 78, 80, 84, 76, 71, 87, 81
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2015

Keywords

Comments

The graph has a comet appearance. - Daniel Forgues, Dec 15 2015

Examples

			When n = 19 = A192607(11) [the eleventh nonludic number], we look for the value of a(11), which is 11 [all terms less than 19 are fixed because the beginnings of A003309 and A008578 coincide up to A003309(8) = A008578(8) = 17], and then take the eleventh composite number, which is A002808(11) = 20, thus a(19) = 20.
When n = 25 = A003309(10) = A003309(1+9) [the tenth ludic number, and ninth after one], we look for the value of a(9), which is 9 [all terms less than 19 are fixed, see above], and then take the ninth prime number, which is A000040(9) = 23, thus a(25) = 23.
		

Crossrefs

Inverse: A255421.
Related or similar permutations: A237427, A246378, A245703, A245704 (compare the scatterplots), A255407, A255408.

Formula

a(1)=1; and for n > 1, if A192490(n) = 1 [i.e., n is ludic], a(n) = A000040(a(A192512(n)-1)), otherwise a(n) = A002808(a(A236863(n))) [where A192512 and A236863 give the number of ludic and nonludic numbers <= n, respectively].
As a composition of other permutations: a(n) = A246378(A237427(n)).

A245613 Permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = A244991(a(k)), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = A244990(1+a(k)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 9, 7, 11, 10, 32, 18, 13, 12, 17, 15, 22, 20, 35, 19, 66, 14, 24, 21, 34, 25, 23, 33, 31, 45, 63, 37, 27, 26, 41, 36, 29, 43, 69, 40, 134, 30, 47, 39, 44, 68, 71, 50, 38, 46, 67, 131, 28, 49, 42, 70, 64, 52, 92, 48, 127, 65, 61, 75, 55, 51, 89, 83, 73, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Comments

This shares with the permutation A122111 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.

Crossrefs

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, a(n) = A244991(a(A055038(n))), otherwise a(n) = A244990(1+a(A055037(n)-1)).
As a composition of related permutations:
a(n) = A244322(A245603(n)).
For all n >= 1, A066829(n) = A244992(a(n)).

A252757 Permutation of natural numbers: a(1)=1, and for n>1, if n is k-th number whose largest prime factor is less than the square of its smallest prime factor [i.e., n = A251726(k)], a(n) = 2*a(k), otherwise, when n = A251727(k), a(n) = 1 + 2*a(k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 3, 512, 6, 1024, 5, 12, 2048, 10, 24, 4096, 9, 20, 17, 48, 8192, 18, 33, 40, 65, 34, 129, 96, 16384, 257, 513, 36, 66, 80, 7, 1025, 13, 130, 2049, 68, 11, 258, 25, 192, 32768, 514, 4097, 21, 49, 1026, 72, 132, 8193, 19, 41, 160, 35, 14, 97, 2050, 26, 260, 16385, 4098, 37, 67, 81, 136, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Crossrefs

Inverse: A252758.
Similar permutations: A243287, A135141, A237427.

Formula

a(1)=1, and for n>1: if A252372(n) = 1 [i.e. the largest prime factor of n is less than the square of its smallest prime factor], a(n) = 2*a(A252373(k)), otherwise, a(n) = 1 + 2*a(n-A252373(n)-1).
Previous Showing 31-40 of 44 results. Next