cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 55 results. Next

A136060 Daughter primes of order 11.

Original entry on oeis.org

3, 7, 13, 31, 37, 43, 61, 73, 103, 163, 211, 223, 241, 271, 307, 313, 331, 367, 397, 421, 463, 523, 541, 577, 643, 727, 757, 853, 877, 883, 937, 1051, 1087, 1093, 1153, 1237, 1291, 1303, 1381, 1423, 1471, 1597, 1693, 1723, 1777, 1951, 1993, 2131, 2161, 2203
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest daughter primes of order n see A136019 (also definition). For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For daughter primes of order 3 see A136052. For daughter primes of order 4 see A136053. For daughter primes of order 5 see A136054. For daughter primes of order 6 see A136055. For daughter primes of order 7 see A136056. For daughter primes of order 8 see A136057. For daughter primes of order 9 see A136058. For daughter primes of order 10 see A136059.

Crossrefs

Programs

  • Mathematica
    n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a

A136063 Mother primes of order 4.

Original entry on oeis.org

19, 37, 109, 163, 199, 271, 379, 523, 541, 631, 739, 919, 1009, 1171, 1459, 1549, 1621, 1783, 1999, 2053, 2089, 2143, 2161, 2251, 2521, 2539, 2791, 2971, 3169, 3673, 3889, 3943, 4159, 4483, 4519, 4861, 5059, 5113, 5563, 5779, 5869, 5923, 6211, 6301, 6373
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062.

Crossrefs

Programs

  • Mathematica
    n = 4; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136064 Mother primes of order 5.

Original entry on oeis.org

23, 67, 199, 331, 397, 463, 661, 727, 859, 1123, 1783, 2113, 2179, 2311, 2971, 3037, 3433, 3631, 3697, 4027, 4093, 4159, 4357, 4621, 5347, 5479, 5743, 6007, 6271, 6337, 6733, 7393, 7591, 7789, 8053, 8317, 8647, 9043, 9109, 9439, 9967, 10099, 10627
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063.

Crossrefs

Programs

  • Mathematica
    n = 5; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136065 Mother primes of order 6.

Original entry on oeis.org

53, 79, 131, 157, 521, 547, 599, 677, 859, 911, 937, 1249, 1301, 1327, 1951, 2029, 2237, 2341, 2549, 2731, 2887, 2939, 3121, 3251, 3329, 3407, 3511, 3797, 4057, 4759, 4967, 5591, 5981, 6007, 6761, 7229, 7307, 7411, 7489, 7879, 8009, 8191, 8581, 8737
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064.

Crossrefs

Programs

  • Mathematica
    n = 6; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136067 Mother primes of order 8.

Original entry on oeis.org

103, 307, 613, 1021, 1123, 1327, 2143, 2347, 2551, 3061, 3571, 3877, 4591, 6427, 6733, 7753, 8263, 8467, 9181, 9283, 10303, 10711, 11731, 12037, 12343, 12547, 12853, 15607, 15913, 16831, 17137, 17341, 17851, 18973, 19891, 21013, 21727
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066.

Crossrefs

Programs

  • Mathematica
    n = 8; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136068 Mother primes of order 9.

Original entry on oeis.org

191, 229, 419, 571, 761, 1103, 1483, 1559, 1901, 2053, 2129, 2851, 3079, 4219, 4409, 4523, 4561, 4751, 6271, 6689, 6803, 7069, 7753, 8171, 8209, 8513, 8741, 8779, 9311, 9463, 9539, 10831, 11743, 11971, 12161, 12503, 12541, 12959, 14251, 14593, 14669
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.

Crossrefs

Programs

  • Mathematica
    n = 9; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136070 Mother primes of order 11.

Original entry on oeis.org

47, 139, 277, 691, 829, 967, 1381, 1657, 2347, 3727, 4831, 5107, 5521, 6211, 7039, 7177, 7591, 8419, 9109, 9661, 10627, 12007, 12421, 13249, 14767, 16699, 17389, 19597, 20149, 20287, 21529, 24151, 24979, 25117, 26497, 28429, 29671, 29947
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067. For mother primes of order 10 see A136068.

Crossrefs

Programs

  • Mathematica
    n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136071 Father primes of order 2.

Original entry on oeis.org

19, 29, 59, 89, 149, 239, 269, 359, 419, 449, 509, 569, 659, 839, 1259, 1289, 1319, 1409, 1559, 1949, 2099, 2309, 2339, 2399, 2459, 2549, 2609, 2789, 2819, 2939, 2969, 2999, 3089, 3209, 3299, 3389, 3719, 3989, 4049, 4139, 4289, 4409, 4649, 4889, 4919
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest father primes of order n see A136026 (also definition). For father primes of order 1 see A094524.

Crossrefs

Programs

  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136072 Father primes of order 3.

Original entry on oeis.org

41, 83, 97, 139, 167, 223, 293, 307, 419, 433, 503, 587, 727, 769, 797, 1049, 1063, 1217, 1259, 1399, 1483, 1567, 1609, 1637, 1693, 1847, 1889, 1973, 1987, 2477, 2617, 2659, 2687, 2729, 2939, 2953, 3023, 3037, 3079, 3359, 3499, 3527, 3793, 3947, 3989
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Primes of the form 7p+6 where p is prime. - David Radcliffe, Nov 30 2015

Crossrefs

For smallest father primes of order n see A136026 (also definition). For father primes of order 1 see A094524. For father primes of order 2 see A136071.

Programs

  • Maple
    select(t -> isprime(t) and isprime((t-6)/7), [seq(i,i=13..10000, 14)]); # Robert Israel, Nov 30 2015
  • Mathematica
    n = 3; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

Extensions

Typo in Mathematica program fixed by David Radcliffe, Nov 30 2015

A136073 Father primes of order 4.

Original entry on oeis.org

53, 71, 107, 179, 269, 431, 557, 647, 719, 809, 881, 971, 1151, 1187, 1259, 1367, 1511, 1619, 1637, 1907, 2069, 2267, 2447, 2861, 3041, 3581, 3617, 3779, 3797, 4049, 4157, 4211, 4391, 4877, 4931, 5021, 5147, 5399, 5417, 5471, 5939, 6101, 6317, 6389, 6551
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest father primes of order n see A136026 (also definition). For father primes of order 1 see A094524. For father primes of order 2 see A136071. For father primes of order 3 see A136072.

Crossrefs

Programs

  • Mathematica
    n = 4; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
Previous Showing 31-40 of 55 results. Next