cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A136061 Primes p such that (p+4)/5 is also prime.

Original entry on oeis.org

11, 31, 61, 151, 181, 211, 331, 541, 631, 691, 751, 811, 991, 1051, 1201, 1381, 1531, 1741, 1831, 1861, 2161, 2281, 2311, 2731, 2851, 3001, 3061, 3301, 3361, 3541, 3631, 3691, 3931, 4051, 4111, 4261, 4591, 4831, 4951, 5101, 5431, 5581, 5641, 5851, 6151
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

Equivalently: Mother primes of order 2. For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180.

Crossrefs

Programs

  • GAP
    A136061:=Filtered(Filtered([1..10^6],IsPrime),p->IsPrime((p+4)/5)); # Muniru A Asiru, Oct 10 2017
  • Mathematica
    n = 2; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
    Select[Prime[Range[400]], PrimeQ[(# + 4) / 5]&] (* Vincenzo Librandi, Apr 14 2013 *)
  • PARI
    {forprime(p=1,1e4/*default(primelimit)*/, p%5-1 & next; isprime(p\5+1) & print1(p","))}  \\ M. F. Hasler, Feb 26 2012
    

A136066 Mother primes of order 7.

Original entry on oeis.org

31, 61, 151, 181, 241, 271, 331, 421, 541, 601, 631, 691, 991, 1051, 1171, 1231, 1321, 1531, 1621, 1951, 2221, 2251, 2341, 2671, 2851, 2971, 3331, 3391, 3571, 3931, 4021, 4051, 4201, 4231, 4591, 4651, 4951, 5281, 5581, 5821, 6121, 6271, 6301, 6451, 6481
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136062 Mother primes of order 3.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 281, 421, 463, 491, 547, 617, 673, 701, 743, 757, 883, 911, 953, 967, 1051, 1093, 1163, 1373, 1471, 1583, 1597, 1667, 1877, 1933, 2143, 2213, 2311, 2423, 2437, 2647, 2801, 2857, 2927, 3011, 3067, 3137, 3221, 3347, 3557
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061.

Crossrefs

Programs

  • Mathematica
    n = 3; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136069 Mother primes of order 10.

Original entry on oeis.org

43, 127, 211, 337, 379, 463, 631, 757, 883, 967, 1093, 1471, 1723, 2017, 2143, 2269, 2647, 2731, 2857, 3109, 3613, 3739, 4159, 4663, 4789, 4999, 5503, 5881, 5923, 6133, 6427, 6553, 6637, 7057, 7309, 7393, 7687, 8317, 8779, 8821, 9199, 9283, 9661, 9787
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.

Crossrefs

Programs

  • Mathematica
    n = 10; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136063 Mother primes of order 4.

Original entry on oeis.org

19, 37, 109, 163, 199, 271, 379, 523, 541, 631, 739, 919, 1009, 1171, 1459, 1549, 1621, 1783, 1999, 2053, 2089, 2143, 2161, 2251, 2521, 2539, 2791, 2971, 3169, 3673, 3889, 3943, 4159, 4483, 4519, 4861, 5059, 5113, 5563, 5779, 5869, 5923, 6211, 6301, 6373
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062.

Crossrefs

Programs

  • Mathematica
    n = 4; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136064 Mother primes of order 5.

Original entry on oeis.org

23, 67, 199, 331, 397, 463, 661, 727, 859, 1123, 1783, 2113, 2179, 2311, 2971, 3037, 3433, 3631, 3697, 4027, 4093, 4159, 4357, 4621, 5347, 5479, 5743, 6007, 6271, 6337, 6733, 7393, 7591, 7789, 8053, 8317, 8647, 9043, 9109, 9439, 9967, 10099, 10627
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063.

Crossrefs

Programs

  • Mathematica
    n = 5; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136067 Mother primes of order 8.

Original entry on oeis.org

103, 307, 613, 1021, 1123, 1327, 2143, 2347, 2551, 3061, 3571, 3877, 4591, 6427, 6733, 7753, 8263, 8467, 9181, 9283, 10303, 10711, 11731, 12037, 12343, 12547, 12853, 15607, 15913, 16831, 17137, 17341, 17851, 18973, 19891, 21013, 21727
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066.

Crossrefs

Programs

  • Mathematica
    n = 8; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136068 Mother primes of order 9.

Original entry on oeis.org

191, 229, 419, 571, 761, 1103, 1483, 1559, 1901, 2053, 2129, 2851, 3079, 4219, 4409, 4523, 4561, 4751, 6271, 6689, 6803, 7069, 7753, 8171, 8209, 8513, 8741, 8779, 9311, 9463, 9539, 10831, 11743, 11971, 12161, 12503, 12541, 12959, 14251, 14593, 14669
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067.

Crossrefs

Programs

  • Mathematica
    n = 9; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a

A136070 Mother primes of order 11.

Original entry on oeis.org

47, 139, 277, 691, 829, 967, 1381, 1657, 2347, 3727, 4831, 5107, 5521, 6211, 7039, 7177, 7591, 8419, 9109, 9661, 10627, 12007, 12421, 13249, 14767, 16699, 17389, 19597, 20149, 20287, 21529, 24151, 24979, 25117, 26497, 28429, 29671, 29947
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest mother primes of order n see A136020 (also definition). For mother primes of order 1 see A091180. For mother primes of order 2 see A136061. For mother primes of order 3 see A136062. For mother primes of order 4 see A136063. For mother primes of order 5 see A136064. For mother primes of order 6 see A136065. For mother primes of order 8 see A136066. For mother primes of order 9 see A136067. For mother primes of order 10 see A136068.

Crossrefs

Programs

  • Mathematica
    n = 11; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, Prime[k]]], {k, 1, 1500}]; a
Showing 1-9 of 9 results.