cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A136088 Son primes of order 11.

Original entry on oeis.org

5, 47, 83, 89, 113, 149, 167, 173, 179, 233, 239, 293, 383, 389, 443, 569, 587, 599, 683, 797, 839, 947, 1013, 1019, 1097, 1103, 1223, 1229, 1259, 1283, 1289, 1373, 1409, 1427, 1439, 1493, 1499, 1523, 1559, 1913, 1997, 2003, 2027, 2039, 2069, 2087, 2099
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136086.

Crossrefs

Programs

  • Mathematica
    n = 11; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

A136089 Son primes of order 12.

Original entry on oeis.org

5, 7, 13, 17, 19, 23, 41, 59, 61, 67, 79, 83, 101, 107, 109, 131, 137, 139, 163, 173, 181, 191, 199, 229, 233, 251, 257, 263, 277, 293, 307, 317, 347, 353, 359, 367, 373, 389, 397, 419, 431, 461, 467, 521, 523, 569, 577, 587, 607, 613, 653, 683, 691, 709, 727
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136087. For son primes of order 11 see A136088.

Crossrefs

Programs

  • Mathematica
    n = 12; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

A136090 Son primes of order 13.

Original entry on oeis.org

3, 23, 29, 31, 43, 59, 73, 83, 101, 109, 139, 149, 193, 199, 223, 233, 251, 263, 293, 311, 331, 359, 379, 389, 401, 409, 421, 433, 443, 449, 461, 463, 479, 499, 541, 563, 571, 601, 641, 643, 653, 739, 769, 773, 821, 823, 829, 839, 853, 863, 881, 911, 991, 1019
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136087. For son primes of order 11 see A136088. For son primes of order 12 see A136088.

Crossrefs

Programs

  • Mathematica
    n = 13; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

A136091 Son primes of order 14.

Original entry on oeis.org

5, 11, 17, 41, 71, 89, 101, 137, 149, 167, 197, 239, 251, 257, 269, 317, 347, 401, 431, 449, 461, 521, 569, 617, 641, 659, 677, 701, 719, 839, 881, 1031, 1049, 1091, 1109, 1277, 1289, 1367, 1427, 1439, 1487, 1499, 1571, 1601, 1637, 1667, 1721, 1847, 1871
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136087. For son primes of order 11 see A136088. For son primes of order 12 see A136089. For son primes of order 13 see A136090.

Crossrefs

Programs

  • Mathematica
    n = 14; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

A136053 Daughter primes of order 4.

Original entry on oeis.org

3, 5, 13, 19, 23, 31, 43, 59, 61, 71, 83, 103, 113, 131, 163, 173, 181, 199, 223, 229, 233, 239, 241, 251, 281, 283, 311, 331, 353, 409, 433, 439, 463, 499, 503, 541, 563, 569, 619, 643, 653, 659, 691, 701, 709, 743, 761, 773, 853, 859, 863, 911, 919, 929, 941
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest daughter primes of order n see A136019 (also definition). For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For daughter primes of order 3 see A136052.

Crossrefs

Programs

  • Mathematica
    n = 4; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a

A136054 Daughter primes of order 5.

Original entry on oeis.org

3, 7, 19, 31, 37, 43, 61, 67, 79, 103, 163, 193, 199, 211, 271, 277, 313, 331, 337, 367, 373, 379, 397, 421, 487, 499, 523, 547, 571, 577, 613, 673, 691, 709, 733, 757, 787, 823, 829, 859, 907, 919, 967, 991, 997, 1033, 1051, 1117, 1123, 1129, 1237, 1249
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest daughter primes of order n see A136019 (also definition). For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For daughter primes of order 3 see A136052. For daughter primes of order 4 see A136053.

Crossrefs

Programs

  • Mathematica
    n = 5; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a

A136055 Daughter primes of order 6.

Original entry on oeis.org

5, 7, 11, 13, 41, 43, 47, 53, 67, 71, 73, 97, 101, 103, 151, 157, 173, 181, 197, 211, 223, 227, 241, 251, 257, 263, 271, 293, 313, 367, 383, 431, 461, 463, 521, 557, 563, 571, 577, 607, 617, 631, 661, 673, 683, 691, 727, 757, 773, 811, 823, 827, 883, 887, 907
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest daughter primes of order n see A136019 (also definition). For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For daughter primes of order 3 see A136052. For daughter primes of order 4 see A136053. For daughter primes of order 5 see A136054.

Crossrefs

Programs

  • Mathematica
    n = 6; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a
    Select[(Prime[Range[2000]]+12)/13,PrimeQ] (* Harvey P. Dale, May 27 2012 *)

A136056 Daughter primes of order 7.

Original entry on oeis.org

3, 5, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 67, 71, 79, 83, 89, 103, 109, 131, 149, 151, 157, 179, 191, 199, 223, 227, 239, 263, 269, 271, 281, 283, 307, 311, 331, 353, 373, 389, 409, 419, 421, 431, 433, 439, 457, 467, 491, 509, 541, 547, 563, 569, 577, 599
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest daughter primes of order n see A136019 (also definition). For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For daughter primes of order 3 see A136052. For daughter primes of order 4 see A136053. For daughter primes of order 5 see A136054. For daughter primes of order 6 see A136055.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a

A136057 Daughter primes of order 8.

Original entry on oeis.org

7, 19, 37, 61, 67, 79, 127, 139, 151, 181, 211, 229, 271, 379, 397, 457, 487, 499, 541, 547, 607, 631, 691, 709, 727, 739, 757, 919, 937, 991, 1009, 1021, 1051, 1117, 1171, 1237, 1279, 1321, 1327, 1399, 1549, 1609, 1621, 1699, 1741, 1747, 1867, 1951, 1999
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest daughter primes of order n see A136019 (also definition). For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For daughter primes of order 3 see A136052. For daughter primes of order 4 see A136053. For daughter primes of order 5 see A136054. For daughter primes of order 6 see A136055 Daughter primes of order 7 see A136056.

Crossrefs

Programs

  • Mathematica
    n = 8; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a

A136058 Daughter primes of order 9.

Original entry on oeis.org

11, 13, 23, 31, 41, 59, 79, 83, 101, 109, 113, 151, 163, 223, 233, 239, 241, 251, 331, 353, 359, 373, 409, 431, 433, 449, 461, 463, 491, 499, 503, 571, 619, 631, 641, 659, 661, 683, 751, 769, 773, 811, 821, 823, 829, 839, 853, 883, 911, 919, 953, 1021, 1031
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest daughter primes of order n see A136019 (also definition). For daughter primes of order 1 see A088878. For daughter primes of order 2 see A136051. For daughter primes of order 3 see A136052. For daughter primes of order 4 see A136053. For daughter primes of order 5 see A136054. For daughter primes of order 6 see A136055. For daughter primes of order 7 see A136056. For daughter primes of order 8 see A136057.

Crossrefs

Programs

  • Mathematica
    n = 9; a = {}; Do[If[PrimeQ[(Prime[k] + 2n)/(2n + 1)], AppendTo[a, (Prime[k] + 2n)/(2n + 1)]], {k, 1, 1500}]; a
Previous Showing 21-30 of 57 results. Next