cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A289957 Number of permutations of [n] having exactly nine nontrivial cycles.

Original entry on oeis.org

34459425, 4583103525, 353553700500, 20941727706900, 1063956789420525, 49122916648430625, 2133284602385096160, 89095866141017736000, 3632887356673057858375, 146162134100332940264675, 5846991791902793693661500, 233881907399101905866222300
Offset: 18

Views

Author

Alois P. Heinz, Jul 16 2017

Keywords

Comments

A nontrivial cycle has size > 1.

Crossrefs

Column k=9 of A136394.

Programs

  • Mathematica
    Drop[CoefficientList[Series[(-Log[1 - x] - x)^9/9!*Exp[x] , {x, 0, 50}], x] * Table[k !, {k, 0, 50}] , 18] (* Indranil Ghosh, Jul 16 2017 *)
  • PARI
    x = 'x + O('x^30); Vec(serlaplace((-log(1-x)-x)^9/9!*exp(x))) \\ Michel Marcus, Jul 16 2017

Formula

E.g.f.: (-log(1-x)-x)^9/9!*exp(x).

A289958 Number of permutations of [n] having exactly ten nontrivial cycles.

Original entry on oeis.org

654729075, 105411381075, 9729928783575, 682187321190375, 40619713503218850, 2178070341434237250, 108946451099337101250, 5201416870471272701250, 240786076823686096077375, 10929696310323023478019775, 490470855046984824670532875, 21893162839119896036432594875
Offset: 20

Views

Author

Alois P. Heinz, Jul 16 2017

Keywords

Comments

A nontrivial cycle has size > 1.

Crossrefs

Column k=10 of A136394.

Programs

  • Mathematica
    Drop[CoefficientList[Series[(Log[1 - x] + x)^10/10!*Exp[x] , {x, 0, 50}], x] * Table[k!, {k, 0, 50}] , 20] (* Indranil Ghosh, Jul 16 2017 *)
  • PARI
    x = 'x + O('x^30); Vec(serlaplace((-log(1-x)-x)^10/10!*exp(x))) \\ Michel Marcus, Jul 16 2017

Formula

E.g.f.: (log(1-x)+x)^10/10!*exp(x).

A350446 Number T(n,k) of endofunctions on [n] with exactly k cycles of length larger than 1; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 1, 3, 1, 16, 11, 125, 128, 3, 1296, 1734, 95, 16807, 27409, 2425, 15, 262144, 499400, 61054, 945, 4782969, 10346328, 1605534, 42280, 105, 100000000, 240722160, 44981292, 1706012, 11025, 2357947691, 6222652233, 1351343346, 67291910, 763875, 945
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Examples

			Triangle T(n,k) begins:
           1;
           1;
           3,          1;
          16,         11;
         125,        128,          3;
        1296,       1734,         95;
       16807,      27409,       2425,       15;
      262144,     499400,      61054,      945;
     4782969,   10346328,    1605534,    42280,    105;
   100000000,  240722160,   44981292,  1706012,  11025;
  2357947691, 6222652233, 1351343346, 67291910, 763875, 945;
  ...
		

Crossrefs

Column k=0 gives A000272(n+1).
Row sums give A000312.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    t:= proc(n) option remember; n^(n-1) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*(c(i)*x+t(i)), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    egf := k-> (LambertW(-x)-log(1+LambertW(-x)))^k/(exp(LambertW(-x))*k!):
    A350446 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A350446(n, k), k=0..n/2)), n=0..10); # Mélika Tebni, Mar 23 2023
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    t[n_] := t[n] = n^(n - 1);
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*(c[i]*x + t[i]), {i, 1, n}]]];
    T[n_] :=  With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)

Formula

From Mélika Tebni, Mar 23 2023: (Start)
E.g.f. of column k: (W(-x)-log(1 + W(-x)))^k / (exp(W(-x))*k!), W(x) the Lambert W-function.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1,j-1)*A136394(j,k), for n > 0.
T(n,k) = Sum_{j=k..n} (n-j+1)^(n-j-1)*binomial(n,j)*A350452(j,k).
Sum_{k=0..n/2} (k+1)*T(n,k) = A190314(n), for n > 0.
Sum_{k=0..n/2} 2^k*T(n,k) = A217701(n). (End)
Previous Showing 11-13 of 13 results.