cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A138551 Moment sequence of t^3 coefficient in det(tI-A) for random matrix A in USp(6).

Original entry on oeis.org

1, 0, 2, 0, 23, 0, 684, 0, 34760, 0, 2493096, 0, 228253267, 0, 25091028820, 0, 3179942075960, 0, 451649016238160, 0, 70421753109861592, 0, 11869050034269797984, 0, 2136758627313217104448, 0
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

Let the random variable X be the coefficient of t^3 in the characteristic polynomial det(tI-A) of a random matrix in USp(6) (6x6 complex matrices that are unitary and symplectic). Then a(n) = E[X^n].
Let L_p(T) be the L-polynomial (numerator of the zeta function) of a genus 3 curve C. Under a generalized Sato-Tate conjecture, for almost all C, a(n) is the n-th moment of the coefficient of t^3 in L_p(t/sqrt(p)), as p varies.

Examples

			a(4) = 23 because E[X^4] = 23 for X the t^3 coeff of det(tI-A) in USp(6).
		

Crossrefs

Formula

See Prop. 12 of Kedlaya-Sutherland.

A174516 Partial sums of A002896.

Original entry on oeis.org

1, 7, 97, 1957, 46687, 1219243, 33715399, 970085119, 28740443449, 870830918389, 26860099935529, 840549807424369, 26620996978712269, 851664885506669269, 27482469263443730269, 893460843597349019629, 29235859228655427097639
Offset: 0

Views

Author

Jonathan Vos Post, Mar 20 2010

Keywords

Examples

			a(4) = 1 + 6 + 90 + 1860 + 44730 = 46687.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = (* A002896 *) Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n}, {1, 1}, 4]; a[n_] := Sum[b[k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 20 2011 *)

Formula

a(n) = Sum_{i=0..n} A002896(i).
G.f.: g/(1-x) where g is the o.g.f. of A002896. - Mark van Hoeij, Nov 12 2011
a(n) ~ 2^(2*n) * 3^(2*n + 7/2) / (35 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Feb 17 2024

A251591 Dimension of space of invariant tensors in 2n-th tensor power of the third fundamental representation of Sp(6).

Original entry on oeis.org

1, 1, 4, 35, 560, 14973, 589743, 30078048, 1824041570, 125400975830, 9507019477382, 78070828079199, 68560287232877740, 6376178095301876005, 623169409884847073730, 636070059202675270255520, 6745818886029778590765570, 740194253157571009569356970
Offset: 0

Views

Author

Bruce Westbury, Dec 05 2014

Keywords

Crossrefs

Programs

  • LiE
    p_tensor(2*n,[0,0,1],C3)|[0,0,0]

A138548 Central moment sequence of tr(A^6) in USp(6).

Original entry on oeis.org

1, 0, 5, 1, 63, 46, 1135, 1800, 25431, 66232, 666387, 2397605, 19650565, 87187842, 633498229, 3214996309, 21829972815, 120665223560, 790528831099, 4613644505799, 29715748525937, 179604102525370, 1149406514424945
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6x6 complex matrices that are unitary and symplectic), then a(n)=E[(tr(A^6)+1)^n] is the n-th central moment of the trace of A^6, since E[tr(A^6)] = -1 (see A138546).

Examples

			a(5) = 46 because E[(tr(A^6)+1)^5] = 46 for a random matrix A in USp(6).
		

Crossrefs

Formula

mgf is A(z)=e^zF(z) where F(z) is the mgf of A138546.
Previous Showing 11-14 of 14 results.