cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A139497 Primes of the form x^2 + 15x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

17, 101, 103, 127, 179, 251, 263, 373, 433, 563, 599, 647, 701, 757, 797, 937, 953, 971, 1063, 1069, 1223, 1277, 1427, 1453, 1481, 1483, 1531, 1543, 1583, 1667, 1699, 1759, 1811, 1871, 2053, 2083, 2089, 2141, 2297, 2393, 2473, 2549, 2837, 2843, 2909, 2939
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 15; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139498 Primes of the form x^2 + 17x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

19, 61, 139, 199, 229, 271, 349, 499, 541, 571, 619, 631, 691, 709, 739, 769, 859, 919, 1051, 1069, 1201, 1279, 1429, 1489, 1531, 1621, 1669, 1759, 1831, 1879, 1999, 2011, 2221, 2239, 2251, 2281, 2341, 2551, 2671, 2791, 2851, 2971, 3019, 3049, 3079, 3121
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 17; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139499 Primes of the form x^2 + 19x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

43, 67, 127, 151, 331, 373, 421, 457, 463, 613, 631, 739, 757, 883, 919, 967, 1033, 1087, 1171, 1327, 1381, 1429, 1453, 1471, 1549, 1579, 1597, 1747, 1759, 1789, 1801, 2053, 2083, 2143, 2269, 2293, 2311, 2347, 2389, 2473, 2503, 2671, 2767, 2797, 2857
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 19; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
    upto=3000;With[{max=Ceiling[Sqrt[upto]]},Select[Union[Select[(First[#]^2+ 19First[#]Last[#]+ Last[#]^2)&/@(Tuples[Range[0,max],{2}]), PrimeQ]], #<+upto&]] (* Harvey P. Dale, Jul 20 2011 *)

A139500 Primes of the form x^2 + 20x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

97, 157, 229, 577, 661, 709, 829, 1453, 1549, 1609, 1621, 1873, 2017, 2137, 2473, 2677, 2689, 2797, 2953, 3001, 3037, 3217, 3301, 3433, 3457, 3613, 3733, 4093, 4261, 4273, 4357, 4513, 4621, 4657, 4801, 4933, 5113, 5281, 5437, 5641, 6229, 6301, 6337
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 20; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
    With[{nn=50},Take[Select[Union[Flatten[Table[x^2+20 x y +y^2,{x,0,2nn},{y,0,2nn}]]],PrimeQ],nn]] (* Harvey P. Dale, Nov 02 2022 *)

A139501 Primes of the form x^2 + 21x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

23, 47, 73, 101, 131, 139, 163, 197, 233, 239, 271, 277, 311, 347, 349, 353, 397, 443, 461, 463, 491, 499, 541, 577, 587, 593, 647, 653, 691, 719, 739, 761, 809, 821, 823, 853, 859, 883, 929, 947, 967, 997, 1013, 1051, 1061, 1087, 1151, 1163, 1223, 1277
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 21; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139503 Primes of the form x^2 + 23x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

79, 109, 151, 211, 331, 379, 421, 499, 541, 571, 631, 709, 739, 751, 919, 991, 1009, 1051, 1129, 1171, 1201, 1381, 1429, 1471, 1549, 1579, 1621, 1759, 1789, 1801, 1831, 1999, 2011, 2179, 2221, 2251, 2269, 2311, 2389, 2521, 2671, 2689, 2731, 2851, 3019
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 23; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139504 Primes of the form x^2 + 24x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

53, 113, 157, 181, 257, 269, 313, 389, 433, 521, 641, 653, 757, 797, 829, 881, 1013, 1049, 1093, 1109, 1153, 1193, 1213, 1277, 1301, 1433, 1453, 1609, 1621, 1637, 1741, 1873, 1901, 1973, 2029, 2161, 2237, 2297, 2341, 2357, 2473, 2557, 2677, 2729, 2753
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 24; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139507 Primes of the form x^2 + 27x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

29, 59, 199, 239, 281, 349, 419, 431, 439, 521, 571, 631, 719, 811, 821, 919, 941, 1009, 1019, 1021, 1039, 1069, 1151, 1231, 1301, 1321, 1459, 1579, 1789, 1831, 1861, 1889, 1949, 1979, 2029, 2039, 2089, 2111, 2141, 2269, 2311, 2411, 2441, 2609, 2659, 2789
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 27; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139508 Primes of the form x^2 + 28x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

61, 181, 601, 829, 1069, 1249, 1381, 1429, 1609, 1621, 1741, 2029, 2089, 2161, 2341, 2389, 2521, 3121, 3169, 3181, 3301, 3709, 3769, 4021, 4261, 4549, 4729, 4801, 4861, 4969, 5209, 5281, 5521, 5581, 5641, 5749, 5821, 6301, 6361, 6421, 6529, 6709, 6829
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

In base 12, the sequence is 51, 131, 421, 591, 751, 881, 971, 9E1, E21, E31, 1011, 1211, 1261, 1301, 1431, 1471, 1561, 1981, 1X01, 1X11, 1XE1, 2191, 2221, 23E1, 2571, 2771, 28X1, 2941, 2991, 2X61, 3021, 3081, 3241, 3291, 3321, 33E1, 3451, 3791, 3821, 3871, 3941, 3X71, 3E51, where X is 10 and E is 11. Moreover, the discriminant is 550. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Mathematica
    a = {}; w = 28; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139509 Primes of the form x^2 + 29x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

31, 97, 211, 373, 547, 607, 661, 769, 877, 1051, 1087, 1123, 1249, 1279, 1303, 1423, 1597, 1657, 1663, 1693, 1741, 1777, 1861, 1867, 2143, 2179, 2251, 2341, 2467, 2539, 2791, 2857, 3229, 3259, 3319, 3331, 3373, 3511, 3541, 3643, 3697, 3769, 3823, 3877
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 29; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
Previous Showing 11-20 of 22 results. Next