A289387 a(n) = Sum_{k>=0} (-1)^k*binomial(n, 5*k+2).
0, 0, 1, 3, 6, 10, 15, 20, 20, 0, -75, -275, -725, -1625, -3250, -5875, -9500, -13125, -13125, 0, 47500, 171875, 450000, 1006250, 2012500, 3640625, 5890625, 8140625, 8140625, 0, -29453125, -106562500, -278984375, -623828125, -1247656250, -2257031250
Offset: 0
References
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
Links
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Vladimir Shevelev, A matrix property of sums of binomial coefficients, Seqfan, Fri Jul 21 2017.
- Wikipedia, Circulant matrix
Programs
-
Maple
f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0, a(1)=0, a(2)=1, a(3) = 3,a(4)=6},a(n),remember): map(f, [$0..40]); # Robert Israel, Jul 11 2017
-
Mathematica
Table[Sum[(-1)^k*Binomial[n, 5 k + 2], {k, 0, n}], {n, 0, 35}] (* or *) CoefficientList[Series[-((-1 + x)^2 x^2)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
PARI
a(n) = sum(k=0, (n-2)\5, (-1)^k*binomial(n, 5*k+2)); \\ Michel Marcus, Jul 05 2017
Formula
G.f.: -((-1+x)^2*x^2)/((-1+x)^5 - x^5). - Peter J. C. Moses, Jul 05 2017
For n>=1, a(n) = (2/5)*(phi+2)^(n/2)*(cos(Pi*(n-4)/10) + (phi-1)^n*cos(3* Pi*(n-4)/10)), where phi is the golden ratio.
a(n+m) = a(n)*K_1(m) + K_2(n)*K_2(m) + K_1(n)*a(m) - K_5(n)*K_4(m) - K_4(n)*K_5(m), where K_1 is A289306, K_2 is A289321, K_4 is A289388, K_5 is A289389.
For every n>=1, the determinant of circulant matrix of order 5 (see [Wikipedia]) with the entries (-1)^(i-1)* K_i(n), i=1..5, is 0. Here K_1, K_2, K_4 and K_5 are the same as in the previous formula, while K_3(n) = a(n). For a proof and a generalization see the second Shevelev link that also contains two unsolved problems. - Vladimir Shevelev, Jul 26 2017
Extensions
More terms from Peter J. C. Moses, Jul 05 2017
Comments