cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A140243 Decimal expansion of 180*arccos(11/16)/Pi.

Original entry on oeis.org

4, 6, 5, 6, 7, 4, 6, 3, 4, 4, 2, 2, 1, 0, 2, 2, 8, 3, 6, 3, 6, 8, 6, 8, 9, 5, 6, 0, 2, 6, 1, 8, 5, 0, 1, 9, 8, 4, 6, 0, 5, 2, 0, 7, 1, 2, 6, 3, 3, 0, 1, 5, 0, 5, 7, 1, 8, 4, 9, 6, 4, 5, 9, 7, 3, 4, 4, 6, 1, 1, 9, 2, 5, 7, 8, 1, 7, 6, 4, 5, 2, 9, 7, 6, 2, 3, 2, 7, 0, 6, 1, 9, 9, 9, 2, 8, 4, 5, 0, 2, 2, 4, 2, 5, 4
Offset: 2

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Angle in degrees of the larger acute angle of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths.

Examples

			46.5674634422102283636868956026185019846052071263301505718496459734461192578...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[180 ArcCos[11/16]/Pi,10,120][[1]] (* Harvey P. Dale, Jul 07 2022 *)
  • PARI
    180*acos(11/16)/Pi

Formula

180*arccos(11/16)/Pi = 180*A140242/Pi.

A196361 Decimal expansion of the absolute minimum of cos(t) + cos(2t) + cos(3t).

Original entry on oeis.org

1, 3, 1, 5, 5, 6, 5, 1, 5, 4, 7, 2, 0, 4, 4, 9, 4, 1, 2, 3, 5, 2, 2, 7, 0, 7, 5, 0, 9, 4, 3, 5, 1, 1, 9, 6, 2, 2, 2, 1, 1, 7, 8, 3, 0, 6, 7, 2, 5, 0, 7, 9, 6, 7, 6, 3, 9, 1, 7, 9, 0, 4, 1, 5, 3, 4, 8, 4, 2, 5, 2, 5, 0, 4, 6, 7, 1, 1, 0, 5, 7, 0, 1, 6, 0, 1, 0, 1, 8, 5, 9, 4, 5, 6, 3, 6, 3, 1, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2011

Keywords

Comments

The function f(x) = cos(x) + cos(2x) + ... + cos(nx), where n >= 2, attains an absolute minimum at some c between 0 and Pi. Related sequences (with graphs in Mathematica programs):
n x min(f(x))
= ======= =========
2 A140244 -9/8

Examples

			x = 1.2929430585054266652256311954691354...
min(f(x)) = -1.3155651547204494123522707...
		

Crossrefs

Cf. A198670.

Programs

  • Mathematica
    n = 3; f[t_] := Cos[t]; s[t_] := Sum[f[k*t], {k, 1, n}];
    x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
    v = 2 Pi - t /. Part[x, 2]
    RealDigits[u]   (* A196361 *)
    RealDigits[v]   (* A198670 *)
    Plot[s[t], {t, -3 Pi, 3 Pi}]
    -(17 + 7*Sqrt[7])/27 // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Feb 19 2013 *)
  • PARI
    (17+7*sqrt(7))/27 \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals (17+7*sqrt(7))/27. [Jonathan Vos Post, Jun 21 2012]
Previous Showing 11-12 of 12 results.