cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A246799 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x-3)^k.

Original entry on oeis.org

1, 7, 2, 34, 20, 3, 142, 128, 39, 4, 547, 668, 309, 64, 5, 2005, 3098, 1929, 604, 95, 6, 7108, 13304, 10434, 4384, 1040, 132, 7, 24604, 54128, 51258, 27064, 8600, 1644, 175, 8, 83653, 211592, 234966, 149536, 59630, 15252, 2443, 224, 9, 280483, 802082, 1022286, 761896, 365810, 117312, 25123, 3464, 279, 10
Offset: 0

Views

Author

Derek Orr, Nov 15 2014

Keywords

Comments

Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x-3)^0 + A_1*(x-3)^1 + A_2*(x-3)^2 + ... + A_n*(x-3)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			Triangle starts:
1;
7,           2;
34,         20,       3;
142,       128,      39,      4;
547,       668,     309,     64,      5;
2005,     3098,    1929,    604,     95,      6;
7108,    13304,   10434,   4384,   1040,    132,     7;
24604,   54128,   51258,  27064,   8600,   1644,   175,    8;
83653,  211592,  234966, 149536,  59630,  15252,  2443,  224,   9;
280483, 802082, 1022286, 761896, 365810, 117312, 25123, 3464, 279, 10;
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = (k+1)*sum(i=0, n-k, 3^i*binomial(i+k+1, k+1))
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))

Formula

T(n,0) = ((2*n+1)*3^(n+1) + 1)/4, for n >= 0.
T(n,n-1) = n*(3*n+4), for n >= 1.
Row n sums to A014916(n+1) = T(2*n+1,0) of A246788.

A192491 Molecular topological indices of the complete tripartite graphs K_{n,n,n}.

Original entry on oeis.org

24, 240, 864, 2112, 4200, 7344, 11760, 17664, 25272, 34800, 46464, 60480, 77064, 96432, 118800, 144384, 173400, 206064, 242592, 283200, 328104, 377520, 431664, 490752, 555000, 624624, 699840, 780864, 867912, 961200
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Crossrefs

Formula

a(n) = 12*n^2*(3*n-1).
a(n) = 24*A050509(n).
G.f.: 24*x*(2*x^2+6*x+1)/(x-1)^4. [Colin Barker, Nov 04 2012]
From Bruce J. Nicholson, Sep 18 2019: (Start)
a(n) = 24*n * A000326(n).
a(n) = 4*n^2 * A017233(n).
a(n) = 24*(n^3 + A000292(n-2) + A000330(n-2)).
a(n) = 24*(n^4 - (A008585(n) * A000330(n-1))).
a(n) = 6*A046092(n) + (A008594(n+1) * A140676(n-1)). (End)
Previous Showing 11-12 of 12 results.