cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A140992 a(0) = 0, a(1) = 1; for n > 1, a(n) = a(n-2) + a(n-1) + A000071(n+1).

Original entry on oeis.org

0, 1, 2, 5, 11, 23, 46, 89, 168, 311, 567, 1021, 1820, 3217, 5646, 9849, 17091, 29523, 50794, 87081, 148820, 253611, 431087, 731065, 1237176, 2089633, 3523226, 5930669, 9968123, 16730831, 28045222, 46954361, 78524160, 131181407
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 08 2008

Keywords

Examples

			If n = 4, then a(4) = a(4-2) + a(4-1) + A000071(4+1) = a(2) + a(3) + A000071(5) = 2 + 5 + 4 = 11.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-1,-3,1,1},{0,1,2,5,11},40] (* Harvey P. Dale, Jun 12 2014 *)

Formula

From R. J. Mathar, Apr 27 2010: (Start)
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
G.f.: -x*(1 - x + x^3) / ( (x - 1)*(x^2 + x - 1)^2 ). (End)
a(n) = A140998(n+1, k = 2) = A140993(n+2, n) for n >= 1. - Petros Hadjicostas, Jun 10 2019

Extensions

Corrected (5980669 replaced by 5930669) by R. J. Mathar, Apr 27 2010

A141019 a(n) is the largest number in the n-th row of triangle A140996.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 60, 116, 224, 432, 833, 1606, 3096, 5968, 11504, 22175, 42744, 84752, 169880, 340013, 679604, 1356641, 2704954, 5387340, 10718620, 21304973, 42308331, 83945336, 166423276, 329683867, 652627294, 1291020297, 2552209710, 5042305104
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 11 2008

Keywords

Comments

Also the largest number in the n-th row of A140995.

Examples

			The largest number of 1 is a(0) = 1.
The largest number of 1 1 is a(1) = 1.
The largest number of 1 2 1 is a(2) = 2.
The largest number of 1 4 2 1 is a(3) = 4.
The largest number of 1 8 4 2 1 is a(4) = 8.
The largest number of 1 16 8 4 2 1 is a(5) = 16.
The largest number of 1 31 17 8 4 2 1 is a(6) = 31.
		

Crossrefs

Programs

  • Maple
    A140996 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; else procname(n-1,k)+procname(n-2,k) +procname(n-3,k)+procname(n-4,k)+procname(n-4,k-1) ; fi; end:
    A141019 := proc(n) max(seq(A140996(n,k),k=0..n)) ; end: for n from 0 to 50 do printf("%d,",A141019(n)) ; od: # R. J. Mathar, Sep 19 2008
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n - 1, 2, k == n-2, 4, k == n-3, 8, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-4, k-1]];
    a[n_] := Table[T[n, k], {k, 0, n}] // Max;
    Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jan 28 2024, after R. J. Mathar *)

Formula

a(n) = max_{k=0..n} A140996(n,k).

Extensions

Partially edited by N. J. A. Sloane, Jul 18 2008
Simplified definition and extended by R. J. Mathar, Sep 19 2008

A141017 List of largest row numbers of Pascal-like triangles with index of asymmetry y = 1 and index of obliqueness z = 0 or z = 1.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 23, 46, 89, 168, 311, 594, 1194, 2355, 4570, 8745, 16532, 32948, 65761, 129632, 252697, 487647, 936785, 1884892, 3754166, 7407451, 14489982, 28118751, 54868937, 110096666, 219129673, 432847116, 848952949, 1654022768, 3256427202, 6524228863, 12983131874, 25671612977, 50454577444
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 11 2008

Keywords

Comments

Triangle with index of asymmetry y = 1 and index of obliqueness z = 0, read by rows, with recurrence for G(n, k) as follows: G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) for k = 1..(n+1).
Triangle with index of asymmetry y = 1 and index of obliqueness z = 1, read by rows, with recurrence for G(n, k) as follows: G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, k) = G(n+1, k-1) + G(n+1, k-2) + G(n+2, k-1) for k = 2..(n+2). [Edited by Petros Hadjicostas, Jun 11 2019]
From Petros Hadjicostas, Jun 10 2019: (Start)
For the triangle with index of asymmetry y = 1 and index of obliqueness z = 0, read by rows, we have G(n, k) = A140998(n, k) for 0 <= k <= n.
For the triangle with index of asymmetry y = 1 and index of obliqueness z = 1, read by rows, we have G(n, k) = A140993(n+1, k+1) for n >= 0 and k >= 0.
Thus, except for the (unfortunate) shifting of the indices by 1, triangular arrays A140998 and A140993 are mirror images of each other.
(End)

Examples

			Triangle with y = 1 and z = 0 (i.e., triangle A140998) begins as follows:
a(1) = max(1) = 1;
a(2) = max(1, 1) = 1;
a(3) = max(1, 2, 1) = 2;
a(4) = max(1, 4, 2, 1) = 4;
a(5) = max(1, 7, 5, 2, 1) = 7;
a(6) = max(1, 12, 11, 5, 2, 1) = 12;
a(7) = max(1, 20, 23, 12, 5, 2, 1) = 23;
a(8) = max(1, 33, 46, 28, 12, 5, 2, 1) = 46;
a(9) = max(1, 54, 89, 63, 29, 12, 5, 2, 1) = 89;
...
		

Crossrefs

Programs

  • Maple
    # Here, BB is the bivariate g.f. of sequence A140993.
    BB := proc(x, y) y*x*(1 - y*x - x^2*y^2 + x^3*y^2)/((1 - x)*(1 - y*x)*(1 - y*x - x^2*y - x^2*y^2)); end proc;
    #
    # Here, we find the n-th row of sequence A140993 and find the maximum of the row:
    ff := proc(n) local xx, k, yy;
    xx := 0;
    for k from 1 to n do
    yy := coeftayl(coeftayl(BB(x, y), x = 0, n), y = 0, k);
    xx := max(xx, yy); end do; xx;
    end proc;
    #
    # Here, we print the maxima of the rows:
    for i from 1 to 40 do
        ff(i);
    end do; # Petros Hadjicostas, Jun 10 2019

Formula

a(n) = max(A140993(n,k), k = 1..n). - R. J. Mathar, Apr 28 2010
a(n) = max(A140998(n-1, k-1), k = 1..n). - Petros Hadjicostas, Jun 10 2019

Extensions

a(4) and offset corrected by Gary W. Adamson, Jul 11 2008
More terms from R. J. Mathar, Apr 28 2010
Name edited and more terms by Petros Hadjicostas, Jun 10 2019
Previous Showing 21-23 of 23 results.