A278602
Sum of the perimeters of all regions of the n-th section of a modular table of partitions.
Original entry on oeis.org
0, 4, 8, 12, 24, 32, 60, 76, 128, 168, 256, 332, 496, 628, 896, 1152, 1580, 2008, 2716, 3416, 4528, 5688, 7388, 9228, 11872, 14708, 18684, 23088, 29004, 35632, 44440, 54288, 67168, 81756, 100384, 121656, 148552, 179192, 217556, 261544, 315836, 378232, 454748, 542584, 649500, 772532, 920912
Offset: 0
For n = 1..6, consider the modular table of partitions for the first six positive integers as shown below in the fourth quadrant of the square grid (see Figure 1):
|--------------|-----------------------------------------------------|
| Modular table| Sections |
| of partitions|-----------------------------------------------------|
| for n=1..6 | 1 2 3 4 5 6 |
1--------------|-----------------------------------------------------|
. _ _ _ _ _ _ _ _ _ _ _ _
. |_| | | | | | |_| _| | | | | | | | | |
. |_ _| | | | | |_ _| _ _| | | | | | | |
. |_ _ _| | | | |_ _ _| _ _ _| | | | | |
. |_ _| | | | |_ _| | | | | |
. |_ _ _ _| | | |_ _ _ _| _ _ _ _| | | |
. |_ _ _| | | |_ _ _| | | |
. |_ _ _ _ _| | |_ _ _ _ _| _ _ _ _ _| |
. |_ _| | | |_ _| | |
. |_ _ _ _| | |_ _ _ _| |
. |_ _ _| | |_ _ _| |
. |_ _ _ _ _ _| |_ _ _ _ _ _|
.
. Figure 1. Figure 2.
.
The table contains 11 regions, see Figure 1.
The regions are distributed in 6 sections. The Figure 2 shows the sections separately.
Then consider the following table which contains the diagram of every region separately:
---------------------------------------------------------------------
| | | | | | |
| Section | Region | Parts | Region | Peri- | a(n) |
| | |(A220482)| diagram | meter | |
---------------------------------------------------------------------
| | | | _ | | |
| 1 | 1 | 1 | |_| | 4 | 4 |
---------------------------------------------------------------------
| | | | _ | | |
| | | 1 | _| | | | |
| 2 | 2 | 2 | |_ _| | 8 | 8 |
---------------------------------------------------------------------
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | _ _| | | | |
| 3 | 3 | 3 | |_ _ _| | 12 | 12 |
---------------------------------------------------------------------
| | | | _ _ | | |
| | 4 | 2 | |_ _| | 6 | |
| |---------|---------|----------------------------| |
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | _| | | | |
| | | 2 | _ _| | | | |
| 4 | 5 | 4 | |_ _ _ _| | 18 | 24 |
---------------------------------------------------------------------
| | | | _ _ _ | | |
| | 6 | 3 | |_ _ _| | 8 | |
| |---------|---------|--------------------|-------| |
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | _| | | | |
| | | 2 | _ _ _| | | | |
| 5 | 7 | 5 | |_ _ _ _ _| | 24 | 32 |
---------------------------------------------------------------------
| | | | _ _ | | |
| | 8 | 2 | |_ _| | 6 | |
| |---------|---------|--------------------|-------| |
| | | | _ _ | | |
| | | 2 | _ _| | | | |
| | 9 | 4 | |_ _ _ _| | 12 | |
1 |---------|---------|--------------------|-------| |
| | | | _ _ _ | | |
| | 10 | 3 | |_ _ _| | 8 | |
| |---------|---------|--------------------|-------| |
| | | | _ | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | | | | | |
| | | 1 | _| | | | |
| | | 2 | | | | | |
| | | 2 | _| | | | |
| | | 3 | _ _ _| | | | |
| 6 | 11 | 6 | |_ _ _ _ _ _| | 34 | 60 |
---------------------------------------------------------------------
.
For n = 1..3, there is only one region in every section. The perimeters of the regions are 4, 8 and 12 respectively, so a(1) = 4, a(2) = 8, and a(3) = 12.
For n = 4, the 4th section contains two regions with perimeters 6 and 18 respectively. The sum of the perimeters is 6 + 18 = 24, so a(4) = 24.
For n = 5, the 5th section contains two regions with perimeters 8 and 24 respectively. The sum of the perimeters is 8 + 24 = 32, so a(5) = 32.
For n = 6, the 6th section contains four regions with perimeters 6, 12, 8 and 34 respectively. The sum of the perimeters is 6 + 12 + 8 + 34 = 60, so a(6) = 60.
A182744
Second column of the table A182742.
Original entry on oeis.org
2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 6, 2, 3, 4, 3, 4, 5, 3, 4, 5, 4, 5, 6, 7, 2
Offset: 1
A182980
Version "mirror" of the shell model of partitions of A135010. Triangle read by rows: row n lists the parts of the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 8, 4, 4, 3, 5, 2, 6, 2, 3, 3, 2, 2, 4, 2, 2, 2, 2
Offset: 1
Triangle begins:
1,
1, 2,
1, 1, 3,
1, 1, 1, 4, 2, 2,
1, 1, 1, 1, 1, 2, 3, 5,
1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7,
A194550
Parts that are visible in one of the three views of the version "Tree" of the shell model of partitions.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 3, 1, 6, 1, 3, 1, 5, 1, 4, 1, 7, 1, 2, 1, 4, 1, 3, 1, 6, 1, 5, 1, 4, 1, 8, 1, 3, 1, 5, 1, 4, 1, 7, 1, 3, 1, 6, 1, 5, 1, 9, 1, 2, 1, 4, 1, 3, 1, 6, 1, 5, 1, 4, 1, 8, 1, 4, 1, 7, 1, 6, 1, 5, 1, 10
Offset: 1
A206438
Triangle read by rows which lists the squares of the parts of A135010.
Original entry on oeis.org
1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 4, 16, 1, 1, 1, 1, 1, 4, 9, 25, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 16, 9, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 9, 4, 25, 9, 16, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 16, 4, 9, 9, 4, 36, 9, 25
Offset: 1
Written as a triangle:
1;
1,4;
1,1,9;
1,1,1,4,4,16;
1,1,1,1,1,4,9,25;
1,1,1,1,1,1,1,4,4,4,4,16,9,9,36;
1,1,1,1,1,1,1,1,1,1,1,4,4,9,4,25,9,16,49;
Right border gives positives
A000290.
-
Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]] ~Join~ DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 8}] ^2 // Flatten (* Robert Price, May 28 2020 *)
A210942
Triangle read by rows in which row n lists the parts > 1 of the n-th region of the shell model of partitions, with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 2, 4, 2, 3, 5, 2, 2, 4, 2, 3, 6, 3, 2, 2, 3, 5, 2, 4, 7, 3, 2, 2, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 3, 5, 2, 4, 7, 3, 2, 2, 3, 6, 3, 5, 9, 4, 3, 3, 2, 2, 2, 2, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 4, 7, 3, 6, 5, 10, 5
Offset: 1
Written as a triangle begins:
1;
2;
3;
2;
4,2;
3;
5,2,
2;
4,2;
3;
6,3,2,2;
3;
5,2;
4;
7,3,2,2;
Cf.
A135010,
A138121,
A182699,
A182709,
A183152,
A186114,
A187219,
A194436-
A194439,
A194447-
A194448,
A196025,
A198381,
A206437,
A210941.
A211026
Number of segments needed to draw (on the infinite square grid) a diagram of regions and partitions of n.
Original entry on oeis.org
4, 6, 8, 12, 16, 24, 32, 46, 62, 86, 114, 156, 204, 272, 354, 464, 596, 772, 982, 1256, 1586, 2006, 2512, 3152, 3918, 4874, 6022, 7438, 9132, 11210, 13686, 16700, 20288, 24622, 29768, 35956, 43276, 52032, 62372, 74678, 89168, 106350
Offset: 1
Cf.
A000041,
A052810,
A135010,
A139582,
A141285,
A186412,
A186114,
A187219,
A193870,
A194446,
A194447,
A206437,
A211009
A228109
Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.
Original entry on oeis.org
0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0
Illustration of initial terms (n = 1..53):
5
4 /
3 /\/\ /
2 / \ /\/
1 /\/\ /\/ \ /\/
0 /\ /\/ \ / \ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
. /\
5..................... / \ /\
. /\ / \ /\ / /
3........... / \ / /\/\ \ / \/ /
2...... /\ / \ /\/ / \ \ / /\/
1... /\ / \ /\/ /\/\ \ / /\/ \ \ /\/ /\/
0 /\/ \/ /\ \/ /\/ \ \/ / \ \/ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
.
Region:
. 1 2 3 4 5 6 7 8 9 10
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A228110,
A229946.
A230440
Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of partitions of n that do not contain 1 as a part in colexicographic order.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 6, 2, 5, 3, 4, 4, 8
Offset: 1
Illustration of initial terms (row = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in colexicographic order, see A211992. More generally, in a master model, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n j Diagram Parts Parts
---------------------------------------------------------
. _
1 1 |_| 1; 1;
. _
2 1 _| | 1, 1,
2 2 |_ _| 2; 2;
. _
3 1 | | 1, 1,
3 2 _ _| | 1, 1,
3 3 |_ _ _| 3; 3;
. _
4 1 | | 1, 1,
4 2 | | 1, 1,
4 3 _ _ _| | 1, 1,
4 4 |_ _| | 2,2, 2,2,
4 5 |_ _ _ _| 4; 4;
. _
5 1 | | 1, 1,
5 2 | | 1, 1,
5 3 | | 1, 1,
5 4 | | 1, 1,
5 5 _ _ _ _| | 1, 1,
5 6 |_ _ _| | 3,2, 3,2,
5 7 |_ _ _ _ _| 5; 5;
. _
6 1 | | 1, 1,
6 2 | | 1, 1,
6 3 | | 1, 1,
6 4 | | 1, 1,
6 5 | | 1, 1,
6 6 | | 1, 1,
6 7 _ _ _ _ _| | 1, 1,
6 8 |_ _| | | 2,2,2, 2,2,2,
6 9 |_ _ _ _| | 4,2, 4,2,
6 10 |_ _ _| | 3,3, 3,3,
6 11 |_ _ _ _ _ _| 6; 6;
...
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[3,2],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[4,2],[3,3],[6];
...
Cf.
A000041,
A135010,
A138121,
A141285,
A182703,
A187219,
A193870,
A194446,
A206437,
A207031,
A207034,
A207383,
A207379,
A211009.
A194551
a(n) is the n-th largest part that are visible in one of the three views of the version "Tree" of the section model of partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 3, 6, 4, 7, 5, 4, 8, 3, 6, 5, 9, 4, 7, 6, 5, 10, 5, 4, 8, 7, 6, 11, 3, 6, 5, 9, 4, 8, 7, 6, 12, 4, 7, 6, 5, 10, 5, 9, 8, 7, 13, 5, 4, 8, 7, 6, 11, 6, 5, 10, 9, 8, 7, 14, 3, 6, 5, 9, 4, 8, 7, 6, 12, 7, 6, 11, 5, 10, 9, 8, 15
Offset: 1
Written as a triangle begins:
1;
2;
3;
4;
5;
3,6;
4,7;
5,4,8;
3,6,5,9;
4,7,6,5,10;
5,4,8,7,6,11;
3,6,5,9,4,8,7,6,12;
4,7,6,5,10,5,9,8,7,13;
5,4,8,7,6,11,6,5,10,9,8,7,14;
...
Row n has length A008483(n), if n >= 3.
-
Join[{1},Table[Drop[l = Last/@DeleteCases[Sort@PadRight[Reverse /@ Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], First@FirstPosition[l, n - 2, {0}]], {n, 2, 15}]] // Flatten (* Robert Price, May 15 2020 *)
Comments