cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 203 results. Next

A161672 Half the product of all numbers from A141468(n) up to prime(n).

Original entry on oeis.org

0, 3, 10, 21, 3960, 77220, 490089600, 1523733120, 2075793350400, 50710801232931840000, 3144069676441774080000, 19348101737674447004467200000, 137500509682406403378413568000000
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 16 2009

Keywords

Examples

			a(1)=0 is the product 0*1*2/2. a(2) is the product 1*2*3/2 = 3. a(3)=10 is the product 4*5/2.
		

Crossrefs

Programs

Formula

a(n) = prime(n)!/ (2*(A141468(n)-1)!).

Extensions

a(0) replaced by 0 - R. J. Mathar, May 21 2010

A161845 a(n) = A002808(n)^A141468(n).

Original entry on oeis.org

1, 6, 4096, 531441, 100000000, 5159780352, 289254654976, 129746337890625, 72057594037927936, 6746640616477458432, 655360000000000000000, 630880792396715529789561, 705429498686404044207947776, 96479729228174488169059713024
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 20 2009

Keywords

Comments

The n-th composite raised to the power m, where m = n-th nonprime.

Examples

			a(1) = 4^0 = 1;
a(2) = 6^1 = 6;
a(3) = 8^4 = 4096;
a(4) = 9^6 = 531441;
a(5) = 10^8 = 100000000;
a(6) = 12^9 = 5159780352.
		

Crossrefs

Programs

  • Maple
    A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) : fi; od: fi; end:
    A141468 := proc(n) if n >= 3 then A002808(n-2) ; else n-1 ; fi; end:
    A161845 := proc(n) A002808(n)^A141468(n) ; end:
    seq(A161845(n),n=1..20) ; # R. J. Mathar, Jun 23 2009

Extensions

a(4) corrected and extended by R. J. Mathar, Jun 23 2009
Edited by Jon E. Schoenfield, Feb 23 2019

A163296 Absolute value of the Sum_{x=0..A141468(n)} x*(-1)^x.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 17, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 38, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 44, 45, 46, 46, 47, 47, 48, 48, 49, 50, 50, 51, 52, 53, 53
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 24 2009

Keywords

Examples

			a(1)=abs(0*(-1)^0)=1, a(2)=abs(0*(-1)^0+1*(-1)^1)=1-1=0, a(3)=abs(1-1+2-3+4)=3, a(4)=abs(1-1+2-3+4-5+6)=4, a(5)=abs(1-1+2-3+4-5+6-7+8)=5, a(6)=abs(1-1+2-3+4-5+6-7+8-9)=abs(-4)=4.
		

Crossrefs

Cf. A141468.

Programs

  • Maple
    A130472 := proc(n) (-1)^n*floor((n+1)/2) ; end: A141468 := proc(n) option remember; local a; if n = 1 then 0 ; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; fi; od: fi; end: A163296 := proc(n) abs(A130472( A141468(n))) ; end: seq(A163296(n),n=1..100) ; # R. J. Mathar, Jul 26 2009
  • Mathematica
    nonPrime[n_Integer] := FixedPoint[n + PrimePi@# &, n + PrimePi@n]; Table[Abs[Sum[k*(-1)^k, {k, 0, nonPrime[n]}]], {n,0,50}] (* G. C. Greubel, Dec 18 2016 *)

Formula

a(n) = |A130472(A141468(n))|. - R. J. Mathar, Jul 26 2009

Extensions

Corrected by R. J. Mathar, Jul 26 2009

A167609 Primes which are not the sum of two consecutive nonprimes A141468.

Original entry on oeis.org

2, 3, 7, 11, 13, 23, 37, 47, 59, 61, 73, 83, 107, 157, 167, 179, 193, 227, 263, 277, 313, 347, 359, 383, 397, 421, 457, 467, 479, 503, 541, 563, 587, 613, 661, 673, 719, 733, 757, 839, 863, 877, 887, 983, 997, 1019, 1093, 1153, 1187, 1201, 1213, 1237, 1283
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 07 2009

Keywords

Comments

2, and primes p such that floor(p/2) or ceiling(p/2) is prime, but not both. - Robert Israel, Jan 23 2024

Crossrefs

Programs

  • Maple
    filter:= proc(n) if n mod 4 = 1
      then isprime(n) and isprime((n+1)/2)
      else isprime(n) and isprime((n-1)/2)
    fi end proc:
    2, 3, op(select(filter, [seq(i,i=7 .. 10000, 2)])); # Robert Israel, Jan 23 2024

Extensions

Entries checked by R. J. Mathar, May 30 2010

A171691 Number of unordered partitions {k1, k2} of n such that k1 and k2 are nonnegative nonprimes A141468.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 1, 3, 2, 3, 3, 5, 2, 5, 3, 5, 4, 6, 3, 7, 5, 7, 5, 8, 5, 9, 6, 8, 7, 10, 7, 12, 7, 9, 9, 12, 8, 13, 9, 12, 10, 13, 9, 15, 11, 15, 11, 15, 11, 17, 13, 16, 13, 17, 13, 20, 14, 16, 15, 20, 15, 22, 15, 18, 17, 22, 16, 23, 17, 21, 18, 23, 18, 26, 18, 23
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 15 2009

Keywords

Examples

			a(1) = 1 because 1 = 0 + 1.
a(2) = 1 because 2 = 1 + 1.
a(3) = 0.
a(4) = 1 because 4 = 0 + 4.
a(5) = 1 because 5 = 1 + 4.
a(6) = 1 because 6 = 0 + 6.
a(7) = 1 because 7 = 1 + 6.
a(8) = 2 because 8 = 0 + 8 = 4 + 4.
		

Crossrefs

Programs

  • PARI
    a(n)={sum(i=0, n\2, (i<2 || !isprime(i)) && !isprime(n-i))} \\ Andrew Howroyd, Jan 05 2020

Extensions

Name clarified and terms a(55) and beyond from Andrew Howroyd, Jan 05 2020

A177416 Triangle read by rows: T(n,k) = 2^A141468(n) mod prime(k).

Original entry on oeis.org

1, 0, 2, 0, 1, 1, 0, 1, 4, 1, 0, 1, 1, 4, 3, 0, 2, 2, 1, 6, 5, 0, 1, 4, 2, 1, 10, 4, 0, 1, 1, 1, 4, 1, 16, 11, 0, 1, 4, 4, 5, 4, 13, 6, 8, 0, 2, 3, 1, 10, 8, 9, 12, 16, 27, 0, 1, 1, 2, 9, 3, 1, 5, 9, 25, 2, 0, 1, 4, 1, 3, 12, 4, 1, 13, 13, 8, 36, 0, 1, 1, 4, 1, 9, 16, 4, 6, 23, 1, 33, 1, 0, 2, 2, 1, 2, 5, 15, 8, 12, 17, 2, 29, 2, 42
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 10 2010

Keywords

Examples

			The triangle begins at row n = 1 with columns 1 <= k <= n:
  1;
  0, 2;
  0, 1, 1;
  0, 1, 4, 1;
  0, 1, 1, 4, 3;
  0, 2, 2, 1, 6, 5;
		

Crossrefs

Programs

  • Mathematica
    MapIndexed[PowerMod[2, #, Prime[Range[First[#2]]]] &, Join[{0, 1}, Select[Range[25], CompositeQ]]] (* Paolo Xausa, Jul 01 2024 *)

Extensions

A 23 replaced with 33 by R. J. Mathar, Dec 13 2010

A105840 Primes of the form r(r(n)+1)+1, where r(n) = A141468(n) = n-th nonprime.

Original entry on oeis.org

2, 11, 17, 23, 31, 37, 41, 47, 59, 67, 71, 73, 79, 83, 89, 97, 101, 103, 109, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 233, 239, 241, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 331, 347, 349, 353, 359, 367
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 25 2008

Keywords

Examples

			If n=1, then r(r(1)+1)+1=r(0+1)+1=r(1)+1=0+1=1 (nonprime).
If n=2, then r(r(2)+1)+1=r(1+1)+1=r(2)+1=1+1=2=a(1).
If n=3, then r(r(3)+1)+1=r(4+1)+1=r(5)+1=8+1=9 (nonprime).
If n=4, then r(r(4)+1)+1=r(6+1)+1=r(7)+1=10+1=11=a(2).
If n=5, then r(r(5)+1)+1=r(8+1)+1=r(9)+1=14+1=15 (nonprime).
If n=6, then r(r(6)+1)+1=r(9+1)+1=r(10)+1=15+1=16 (nonprime).
If n=7, then r(r(7)+1)+1=r(10+1)+1=r(11)+1=16+1=17=a(3).
If n=8, then r(r(8)+1)+1=r(12+1)+1=r(13)+1=20+1+21 (nonprime).
If n=9, then r(r(9)+1)+1=r(14+1)+1=r(15)+1=22+1=23=a(4), etc.
		

Crossrefs

Extensions

53 removed, more terms added by R. J. Mathar, Sep 05 2008

A105882 Nonprimes of the form r(r(n)+1)+1, where A141468(n)=r(n)=n-th nonprime.

Original entry on oeis.org

1, 9, 15, 16, 21, 25, 26, 28, 33, 34, 36, 39, 40, 45, 49, 50, 51, 52, 55, 56, 57, 63, 64, 65, 69, 70, 76, 77, 78, 81, 86, 87, 88, 91, 93, 94, 95, 100, 105, 106, 111, 112, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 130, 133, 135, 141, 143, 145, 146, 147, 153
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 25 2008

Keywords

Examples

			If n=1, then r(r(1)+1)+1=r(0+1)+1=r(1)+1=0+1=1=a(1).
If n=2, then r(r(2)+1)+1=r(1+1)+1=r(2)+1=1+1=2 (prime).
If n=3, then r(r(3)+1)+1=r(4+1)+1=r(5)+1=8+1=9=a(2).
If n=4, then r(r(4)+1)+1=r(6+1)+1=r(7)+1=10+1=11 (prime).
If n=5, then r(r(5)+1)+1=r(8+1)+1=r(9)+1=14+1=15=a(3).
If n=6, then r(r(6)+1)+1=r(9+1)+1=r(10)+1=15+1=16=a(4).
If n=7, then r(r(7)+1)+1=r(10+1)+1=r(11)+1=16+1=17 (prime).
If n=8, then r(r(8)+1)+1=r(12+1)+1=r(13)+1=20+1+21=a(5).
If n=9, then r(r(9)+1)+1=r(14+1)+1=r(15)+1=22+1=23 (prime).
If n=10, then r(r(10)+1)+1=r(15+1)+1=r(16)+1=24+1=25=a(6), etc.
		

Crossrefs

Extensions

49 and 69 inserted by R. J. Mathar, Sep 05 2008

A106613 Nonprimes of the form r(r(r(n)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.

Original entry on oeis.org

1, 15, 25, 26, 34, 36, 40, 45, 49, 51, 52, 55, 56, 57, 63, 65, 69, 70, 76, 77, 78, 81, 86, 87, 88, 91, 93, 94, 95, 105, 106, 112, 116, 117, 118, 119, 121, 123, 124, 125, 133, 135, 143, 145, 146, 153, 154, 155, 159, 160, 161, 162, 165, 169, 170, 172, 175, 177, 183, 185
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 25 2008

Keywords

Examples

			If n=1, then
r(r(r(1)+1)+1)+1=r(r(0+1)+1)+1=r(r(1)+1)+1=r(0+1)+1=r(1)+1=0+1=1=a(1).
If n=2, then
r(r(r(2)+1)+1)+1=r(r(1+1)+1)+1=r(r(2)+1)+1=r(1+1)+1=r(2)+1=1+1=2
(prime).
If n=3, then
r(r(r(3)+1)+1)+1=r(r(4+1)+1)+1=r(r(5)+1)+1=r(8+1)+1=r(9)+1=14+1=15=a(2).
If n=4, then
r(r(r(4)+1)+1)+1=r(r(6+1)+1)+1=r(r(7)+1)+1=r(10+1)+1=r(11)+1=16+1=17
(prime).
If n=5, then
r(r(r(5)+1)+1)+1=r(r(8+1)+1)+1=r(r(9)+1)+1=r(14+1)+1=r(15)+1=22+1=23
(prime).
If n=6, then
r(r(r(6)+1)+1)+1=r(r(9+1)+1)+1=r(r(10)+1)+1=r(15+1)+1=r(16)+1=24+1=25=a(3).
If n=7, then
r(r(r(7)+1)+1)+1=r(r(10+1)+1)+1=r(r(11)+1)+1=r(16+1)+1=r(17)+1=25+1=26=a(4).
If n=8, then
r(r(r(8)+1)+1)+1=r(r(12+1)+1)+1=r(r(13)+1)+1=r(20+1)+1=r(21)+1=30+1=31
(prime).
If n=9, then
r(r(r(9)+1)+1)+1=r(r(14+1)+1)+1=r(r(15)+1)+1=r(22+1)+1=r(23)+1=33+1=34=a(5).
If n=10, then
r(r(r(10)+1)+1)+1=r(r(15+1)+1)+1=r(r(16)+1)+1=r(24+1)+1=r(25)+1=35+1=36=a(6),
etc.
		

Crossrefs

Extensions

28 removed, 93 added, 126 removed by R. J. Mathar, Sep 05 2008

A106622 Primes of the form r(r(r(n)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.

Original entry on oeis.org

2, 17, 23, 31, 37, 47, 67, 71, 97, 101, 103, 109, 127, 131, 137, 139, 149, 151, 157, 163, 179, 191, 197, 199, 211, 223, 227, 233, 239, 241, 257, 263, 269, 271, 277, 281, 283, 311, 313, 331, 347, 349, 353, 359, 367, 373, 379, 389, 397, 401, 419, 431, 443, 449
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 25 2008

Keywords

Examples

			If n=1, then
r(r(r(1)+1)+1)+1=r(r(0+1)+1)+1=r(r(1)+1)+1=r(0+1)+1=r(1)+1=0+1=1
(nonprime).
If n=2, then
r(r(r(2)+1)+1)+1=r(r(1+1)+1)+1=r(r(2)+1)+1=r(1+1)+1=r(2)+1=1+1=2=a(1).
If n=3, then
r(r(r(3)+1)+1)+1=r(r(4+1)+1)+1=r(r(5)+1)+1=r(8+1)+1=r(9)+1=14+1=15
(nonprime).
If n=4, then
r(r(r(4)+1)+1)+1=r(r(6+1)+1)+1=r(r(7)+1)+1=r(10+1)+1=r(11)+1=16+1=17=a(2).
If n=5, then
r(r(r(5)+1)+1)+1=r(r(8+1)+1)+1=r(r(9)+1)+1=r(14+1)+1=r(15)+1=22+1=23=a(3).
If n=6, then
r(r(r(6)+1)+1)+1=r(r(9+1)+1)+1=r(r(10)+1)+1=r(15+1)+1=r(16)+1=24+1=25
(nonprime).
If n=7, then
r(r(r(7)+1)+1)+1=r(r(10+1)+1)+1=r(r(11)+1)+1=r(16+1)+1=r(17)+1=25+1=26
(nonprime).
If n=8, then
r(r(r(8)+1)+1)+1=r(r(12+1)+1)+1=r(r(13)+1)+1=r(20+1)+1=r(21)+1=30+1=31=a(4).
If n=9, then
r(r(r(9)+1)+1)+1=r(r(14+1)+1)+1=r(r(15)+1)+1=r(22+1)+1=r(23)+1=33+1=34
(nonprime).
If n=10, then
r(r(r(10)+1)+1)+1=r(r(15+1)+1)+1=r(r(16)+1)+1=r(24+1)+1=r(25)+1=35+1=36
(nonprime)
If n=11, then
r(r(r(11)+1)+1)+1=r(r(16+1)+1)+1=r(r(17)+1)+1=r(25+1)+1=r(26)+1=36+1=37=a(5),
etc.
		

Crossrefs

Extensions

67 inserted, 73 removed, 227 and 233 inserted and extended by R. J. Mathar, Sep 05 2008
Previous Showing 11-20 of 203 results. Next