cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A334311 Starts of runs of 4 consecutive base phi Niven numbers (A334308).

Original entry on oeis.org

285129, 1958893, 2501533, 6488440, 7069840, 8803023, 16514327, 23826399, 34031773, 52256248, 68198847, 72969138, 76779087, 77622950, 87430210, 87474672, 96485487, 114137958, 120197293, 136275022, 151444458, 173740578, 174878352, 183872325, 188385855, 196268415
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2020

Keywords

Examples

			285129 is a term since 285129, 285130, 285131 and 285132 are all base phi Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; q1 = phiNivenQ[1]; q2 = phiNivenQ[2]; q3 = phiNivenQ[3]; seq = {}; Do[q4 = phiNivenQ[n]; If[q1 && q2 && q3 && q4, AppendTo[seq, n - 3]]; q1 = q2; q2 = q3; q3 = q4, {n, 4, 10^5}]; seq

A352092 Starts of runs of 4 consecutive tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1602, 218349, 296469, 1213749, 1291869, 1896630, 1952070, 2153709, 2399550, 3149109, 3753870, 3809310, 3983229, 4226208, 4256790, 4449288, 4711482, 5707897, 5727708, 6141750, 6589230, 6969429, 7205757, 7229208, 7276143, 7292943, 7454710, 7752588, 7937109, 8877069
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive tribonacci-Niven numbers (checked up to 10^10).

Examples

			1602 is a term since 1602, 1603, 1604 and 1605 are all divisible by the number of terms in their minimal tribonacci representation:
     k    A278038(k)  A278043(k)  k/A278043(k)
  --------------------------------------------
  1602  110100011010           6           267
  1603  110100011011           7           229
  1604  110100100000           4           401
  1605  110100100001           5           321
		

Crossrefs

Subsequence of A352089, A352090 and A352091.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; triboNivenQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; seq[count_, nConsec_] := Module[{tri = triboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {triboNivenQ[k]}]; k++]; s]; seq[6, 4]

A352110 Starts of runs of 4 consecutive lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

1081455, 1976895, 2894175, 5886255, 6906912, 15604110, 16588752, 19291479, 20387232, 25919439, 32394942, 34801557, 35654175, 36813582, 36907899, 39117219, 41407392, 43520832, 46181055, 47954499, 52145952, 54524319, 54815397, 56733639, 57775102, 58942959, 59292177
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive lazy-tribonacci-Niven numbers (checked up to 6*10^9).

Examples

			1081455 is a term since 1081455, 1081456, 1081457 and 1081458 are all divisible by the number of terms in their maximal tribonacci representation:
        k               A352103(k)   A352104(k)    k/A352104(k)
  -------  -----------------------   ----------    ------------
  1081455  10101011011110110011110           15           72097
  1081456  10101011011110110011111           16           67591
  1081457  10101011011110110100100           13           83189
  1081458  10101011011110110100101           14           77247
		

Crossrefs

Subsequence of A352107, A352108 and A352109.

A330929 Starts of runs of 6 consecutive Niven (or Harshad) numbers (A005349).

Original entry on oeis.org

1, 2, 3, 4, 5, 10000095, 10000096, 12751220, 14250624, 22314620, 22604423, 25502420, 28501224, 35521222, 41441420, 41441421, 51004820, 56511023, 57002424, 70131620, 71042422, 71253024, 97740760, 102009620, 111573020, 114004824, 121136420, 124324220, 124324221
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2020

Keywords

Comments

Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.

Examples

			10000095 is a term since 10000095 is divisible by 1 + 0 + 0 + 0 + 0 + 0 + 9 + 5 = 15, 10000096 is divisible by 16, ..., and 10000100 is divisible by 2.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for k in [1..30000000] do  if forall{m:m in [0..5]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
  • Mathematica
    nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[6]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 5]], {k, 6, 10^7}]; seq

A330930 Starts of runs of 7 consecutive Niven (or Harshad) numbers (A005349).

Original entry on oeis.org

1, 2, 3, 4, 10000095, 41441420, 124324220, 124324221, 124324222, 207207020, 233735070, 331531220, 350602590, 409036350, 414414020, 467470110, 621621020, 621621021, 621621022, 1030302012, 1036035020, 1051807710, 1201800620, 1243242020, 1243242021, 1243242022
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2020

Keywords

Comments

Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.

Examples

			10000095 is a term since 10000095 is divisible by 1 + 0 + 0 + 0 + 0 + 0 + 9 + 5 = 15, 10000096 is divisible by 16, ..., and 10000101 is divisible by 3.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

Crossrefs

Programs

  • Mathematica
    nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[7]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 6]], {k, 7, 10^7}]; seq

A352345 Starts of runs of 4 consecutive lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

750139, 41765247, 54831951, 56423275, 136038447, 151175724, 223956843, 227483124, 293913170, 362557214, 382572475, 457616575, 502106253, 562407324, 586380624, 637133390, 724382239, 771849439, 774421478, 859463253, 926398647, 953750523, 1043787390, 1193063550
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive lazy-Pell-Niven numbers (checked up to 10^9).

Examples

			750139 is a term since 750139, 750140, 750141 and 750142 are all divisible by the sum of the digits in their maximal Pell representation:
       k        A352339(k)  A352340(k)  k/A352340(k)
  ------  ----------------  ---------   -----------
  750139  1102022021112220         19         39481
  750140  1102022021112221         20         37507
  750141  1102022021112222         21         35721
  750142  1102022021120210         17         44126
		

Crossrefs

A352511 Starts of runs of 4 consecutive Catalan-Niven numbers (A352508).

Original entry on oeis.org

144, 15630, 164862, 202761, 373788, 450189, 753183, 1403961, 1779105, 2588415, 2673774, 2814229, 2850880, 3009174, 3013722, 3045870, 3091023, 3702390, 3942519, 4042950, 4432128, 4725432, 4938348, 5718942, 5907312, 6268248, 6519615, 6592752, 6791379, 7095492, 8567802
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive Catalan-Niven numbers (checked up to 10^9).

Examples

			144 is a term since 144, 145, 146 and 147 are all divisible by the sum of the digits in their Catalan representation:
    k  A014418(k)  A014420(k)  k/A014420(k)
  ---  ----------  ----------  ------------
  144      100210           4            36
  145      100211           5            29
  146      101000           2            73
  147      101001           3            49
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; catNivQ[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; seq[count_, nConsec_] := Module[{cn = catNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {catNivQ[k]}]; k++]; s]; seq[5, 4]

A364219 Starts of runs of 4 consecutive integers that are Jacobsthal-Niven numbers (A364216).

Original entry on oeis.org

1, 42, 43, 2731, 11605, 13024, 14229, 25983, 39390, 45727, 46624, 47529, 60073, 96039, 111390, 131103, 132010, 133984, 134430, 140767, 148180, 148181, 148509, 174762, 174763, 187744, 197790, 237609, 247114, 266453, 275229, 287988, 312190, 330847, 354429, 370269
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Crossrefs

Subsequence of A364216, A364217 and A364218.
Subsequences: A364220, A364221.

Programs

  • Mathematica
    consecJacobsthalNiven[4*10^5, 4] (* using the function from A364217 *)
  • PARI
    lista(4*10^5, 4) \\ using the function from A364217

A364382 Starts of runs of 4 consecutive integers that are greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 8, 9, 42, 43, 84, 85, 2730, 2731, 5460, 5461, 21864, 21865, 59477, 60073, 66303, 75048, 112509, 156607, 174762, 174763, 283327, 312190, 320768, 349524, 349525, 351570, 354429, 374589, 384039, 479037, 504510, 527103, 624040, 625470, 656829, 688830, 711423
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Crossrefs

Subsequence of A364379, A364380 and A364381.
A364383 is a subsequence.

Programs

  • Mathematica
    consecGreedyJN[72000, 4] (* using the function consecGreedyJN from A364380 *)
  • PARI
    lista(10^5, 4) \\ using the function lista from A364380

A381584 Starts of runs of 4 consecutive integers that are all terms in A381581.

Original entry on oeis.org

1, 55, 2104, 5222, 24784, 63510, 64264, 69487, 95463, 121393, 184327, 327303, 374589, 463110, 468168, 561069, 572550, 596868, 671407, 740310, 759030, 819948, 902670, 956680, 1023009, 1036230, 1065030, 1259817, 1274910, 1359552, 1683154, 1714470, 1731750, 2182023
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2025

Keywords

Comments

If k is congruent to 1 or 5 mod 12 (A087445), then A001906(k) = Fibonacci(2*k) is a term.

Examples

			1 is a term since A291711(1) = 1 divides 1, A291711(2) = 2 divides 2, A291711(3) = 1 divides 3, and A291711(4) = 2 divides 4.
55 is a term since A291711(55) = 1 divides 55, A291711(56) = 2 divides 56, A291711(57) = 3 divides 57, and A291711(58) = 2 divides 58.
		

Crossrefs

Subsequence of A381581, A381582 and A381583.
A381585 is a subsequence.
Similar sequences: A141769, A328211, A328215, A330933.

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[2*n]; q[n_] := q[n] = Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2; m -= 2*f[k], s++; m -= f[k]]]; Divisible[n, s]]; seq[count_, nConsec_] := Module[{cn = q /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {q[k]}]; k++]; s]; seq[12, 4]
  • PARI
    mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n));
    is1(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);}
    list(lim) = {my(q1 = is1(1), q2 = is1(2), q3 = is1(3), q4); for(k = 4, lim, q4 = is1(k); if(q1 && q2 && q3 && q4, print1(k-3, ", ")); q1 = q2; q2 = q3; q3 = q4);}
Previous Showing 11-20 of 26 results. Next