cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A243311 Decimal expansion of the volume of a regular ideal hyperbolic 4-simplex.

Original entry on oeis.org

2, 6, 8, 8, 9, 5, 6, 6, 0, 1, 6, 9, 3, 1, 1, 2, 2, 5, 4, 6, 9, 2, 9, 4, 8, 6, 7, 2, 2, 7, 2, 4, 5, 6, 6, 4, 5, 2, 4, 9, 9, 4, 4, 3, 7, 1, 9, 3, 0, 3, 1, 3, 7, 2, 9, 2, 1, 0, 7, 6, 4, 8, 0, 2, 5, 7, 6, 3, 9, 2, 6, 0, 9, 0, 0, 9, 9, 2, 6, 4, 7, 2, 9, 4, 4, 3, 7, 4, 8, 1, 3, 4, 8, 4, 3, 1, 8, 1, 9, 7, 5, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 03 2014

Keywords

Examples

			0.268895660169311225469294867227245664524994437...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.9 Hyperbolic volume constants, p. 512.

Crossrefs

Cf. A019503, A143298 (Gieseking's constant is also the volume of a regular ideal hyperbolic 3-simplex).

Programs

  • Mathematica
    RealDigits[10*Pi/3*ArcSin[1/3] - Pi^2/3, 10, 102] // First
  • PARI
    10*Pi/3*asin(1/3) - Pi^2/3 \\ Stefano Spezia, Dec 24 2024

Formula

Equals 10*Pi/3*arcsin(1/3) - Pi^2/3.

A340826 Decimal expansion of Cl_2(Pi/5), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

9, 2, 3, 7, 5, 5, 1, 6, 8, 1, 0, 0, 5, 3, 5, 3, 0, 8, 7, 1, 1, 9, 8, 6, 0, 2, 9, 7, 9, 3, 0, 2, 4, 3, 5, 3, 9, 6, 6, 2, 7, 9, 0, 0, 6, 4, 1, 2, 5, 1, 7, 2, 5, 1, 7, 0, 7, 7, 1, 2, 8, 4, 8, 3, 2, 5, 1, 5, 0, 9, 8, 3, 3, 2, 5, 3, 0, 9, 7, 5, 7, 2, 8, 7, 2, 8, 3, 2, 2, 1, 8, 0, 1, 1, 2, 2, 5, 9, 9, 9, 6, 2, 6, 3, 5
Offset: 0

Views

Author

Artur Jasinski, Jan 23 2021

Keywords

Examples

			0.9237551681005353087119860297930...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261025 (Cl_2(Pi/4)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)), A340628, A340629.

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Re[Cl2[Pi/5]], 10, 105] // First
    N[Pi*(ArcCsch[2] + Log[2*Pi*BarnesG[9/10]^10 / BarnesG[11/10]^10])/5, 120] (* Vaclav Kotesovec, Jan 23 2021 *)

Formula

A = Cl_2(Pi/5).
B = Cl_2(2*Pi/5).
C = Cl_2(3*Pi/5).
D = Cl_2(4*Pi/5).
4*(A^2 + C^2) = 5*(B^2 + D^2).
B = 2*A - 2*D.
D = 2*B - 2*C.
2*C = 4*A - 5*D.
B = -D + sqrt(A*(2*C+D)+D^2).
B^2 + D^2 = 4*Pi^4/(325*A340628^2).
B^2 + D^2 = (13/1125)*A340629^2*Pi^4.
Equals Pi*(2*log(G(9/10) / G(11/10)) + log(Pi*(1+sqrt(5)))/5), where G is the Barnes G-function. - Vaclav Kotesovec, Jan 23 2021
Previous Showing 21-22 of 22 results.