cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A151359 Triangle read by rows: T(n,k) = number of partitions of [1..k] into n nonempty clumps of sizes 1, 2, 3, 4, 5 or 6 (n >= 0, 0 <= k <= 6n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 3, 7, 15, 31, 63, 119, 210, 336, 462, 462, 0, 0, 0, 1, 6, 25, 90, 301, 966, 2989, 8925, 25641, 70455, 183183, 441441, 966966, 1849848, 2858856, 2858856, 0, 0, 0, 0, 1, 10, 65, 350, 1701, 7770, 33985, 143605, 588511
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2009

Keywords

Comments

Row n has 6n+1 entries.

Examples

			Triangle begins:
[0, 1, 1, 1, 1, 1, 1]
[0, 0, 1, 3, 7, 15, 31, 63, 119, 210, 336, 462, 462]
[0, 0, 0, 1, 6, 25, 90, 301, 966, 2989, 8925, 25641, 70455, 183183, 441441, 966966, 1849848, 2858856, 2858856]
[0, 0, 0, 0, 1, 10, 65, 350, 1701, 7770, 33985, 143605, 588511, 2341339, 9032023, 33668635, 120681561, 413104692, 1337944608, 4046710668, 11216721516, 27756632904, 58555088592, 96197645544, 96197645544]
[0, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42525, 246400, 1370985, 7383376, 38657619, 197212015, 980839860, 4752728981, 22399494117, 102410296989, 452572985865, 1924000439361, 7820764020069, 30157961878044, 109184327692440, 365935843649376, 1113006758944080, 2982608000091720, 6696799094545560, 11423951396577720, 11423951396577720]
...
		

Crossrefs

This is one of a sequence of triangles: A144331, A144385, A144643, A151338, A151359, ...
See A151511, A151512 for other versions.

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_ /; 1 <= n <= 6] = 1; a[] = 0; t[n, k_] := t[n, k] = If[k == 0, a[0]^n, Sum[Binomial[n-1, j-1] a[j] t[n-j, k-1], {j, 0, n-k+1}]]; T[n_, k_] := t[k, n+1]; Table[Table[T[n, k], {k, 0, 6(n+1)} ], {n, 0, 4}] // Flatten (* Jean-François Alcover, Jan 20 2016, using Peter Luschny's Bell transform *)

A144626 Tetrahedron of numbers T(i,j,k) = (i+2*j+3*k)!/(i!*j!*k!*2^j*6^k) read with entries in the order defined in A144625.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 4, 10, 10, 1, 6, 15, 15, 10, 60, 105, 70, 280, 280, 1, 10, 45, 105, 105, 20, 210, 840, 1260, 280, 2520, 6300, 2800, 15400, 15400, 1, 15, 105, 420, 945, 945, 35, 560, 3780, 12600, 17325, 840, 12600, 69300, 138600, 15400, 184800, 600600, 200200, 1401400, 1401400
Offset: 0

Views

Author

N. J. A. Sloane, Jan 18 2009, Jan 19 2009

Keywords

Comments

The slice sums are given by A144416.

Examples

			The n-th slice of the tetrahedrom consists of the terms T(i,j,k) with i+j+k = n.
Slices 0,1,2,3,4,5 are:
....................1
------------------
....................1
...................1.1
------------------
....................10
...................4.10
..................1.3..3
------------------
...................280
..................70.280
................10.60.105
...............1..6.15..15
------------------
..................15400
................2800.15400
...............280.2520.6300
.............20..210.840.1260
............1..10..45..105.105
------------------
.................1401400
.............200200.1401400
.........15400.184800...600600
......840..12600..69300...138600
...35....560....3780....12600...17325
1......15....105....420......945.....945
		

Crossrefs

A144516 a(n) = (15*n^2+45*n-70)*binomial(n+4,6)/8.

Original entry on oeis.org

0, 0, 10, 175, 1225, 5565, 19425, 56595, 144375, 332475, 705705, 1401400, 2632630, 4718350, 8121750, 13498170, 21754050, 34118490, 52229100, 78233925, 114911335, 165809875, 235410175, 329311125, 454442625, 619307325, 834253875, 1111784310
Offset: 0

Views

Author

N. J. A. Sloane, Dec 17 2008

Keywords

Crossrefs

A diagonal of A144385.

Programs

  • Maple
    f:=n->(15*n^2+45*n-70)*binomial(n+4,6)/8;
  • Mathematica
    Table[((15n^2+45n-70)Binomial[n+4,6])/8,{n,0,30}] (* Harvey P. Dale, Dec 12 2018 *)

Formula

G.f.: 5x^2(2+17x+2x^2)/(1-x)^9. - R. J. Mathar, Jan 17 2009
Previous Showing 11-13 of 13 results.