cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A285863 Numerators of Bernoulli numbers 3^n*B(n), with B(n) = A027641(n)/A027642(n).

Original entry on oeis.org

1, -3, 3, 0, -27, 0, 243, 0, -2187, 0, 98415, 0, -122408577, 0, 11160261, 0, -51899996619, 0, 5664991530321, 0, -202943637014337, 0, 8938507796555139, 0, -22252066887294301257, 0, 7246946747292751629, 0, -181103830292539169071623
Offset: 0

Views

Author

Wolfdieter Lang, Apr 29 2017

Keywords

Comments

The denominators are given in A285068.
In general the numbers B(d;n) = d^n*B(n), for n >= 0, have e.g.f. d*x/(exp(d*x) - 1). They are also the exponential convolution of the generalized Bernoulli numbers B[d,a](n), obtained from the generalized Stirling2 numbers S2[d,a], with the sequence {(-a)^n}_{n>=0}. See a comment in A157817 for the B[4,1] and B[4,3] examples.
These numbers B(d;n) and their polynomials B(d;n,x) = Sum_{m=0..n} binomial(n, m)*B(d;n-m)*x^m are used in the generalized so-called Faulhaber formula for the sums of powers of arithmetic progressions defined by SP(d,a;n,m) := Sum_{j=0..m} (a + d*j)^n = Sum_{k=0..n} binomial(n, k)*a^(n-k)*d^k*SP(k,m) with SP(k,m) = SP(1,0;k,m), n >= 0, m >= 0, and 0^0 := 1.
The Faulhaber formula is: SP(d,a;n,m) = (1/(d*(n+1)))*[B(d;n+1,x = a+d*(m+1)) - B(d;n+1,x = d) - B(d;n+1,x = a) + B(d;n+1,x=0) + d^(n+1)*[n=0]]. Here [n=0] is the Kronecker delta_{n,0} symbol: 1 if n=0 and 0 otherwise.
A simpler version of the Faulhaber formula is for a=0: SP(d,0;0,m) = m+1 and SP(d,0;n,m) = d^n*(1/(n+1))*(B(n+1, x = m+1) - B(n+1, x=1)) for n >= 1, and for a an integer >= 1: Sum_{k=0..n} binomial(n, k)*a^(n-k) * d^k * (1/(k+1)) * (B(k+1, x=m+1) - B(k+1, x=1)). Here B(n, x) = B(1;n,x) are the usual Bernoulli polynomials from A196838/A196839 or A053382/A053383.

Crossrefs

Programs

  • Maple
    seq(numer(3^n*bernoulli(n)), n=0..28); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[Numerator[3^n*BernoulliB[n]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • PARI
    a(n) = numerator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
  • Python
    from sympy import bernoulli
    def a(n): return -3 if n == 1 else (3**n * bernoulli(n)).numerator
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
    

Formula

a(n) = numerator(r(n)) with r(n) = 3^n*A027641(n)/A027642(n), n >= 0.
E.g.f. {r(n)}_{n>=0}: 3*x/(exp(3*x) - 1).

A335949 a(n) = denominator(b_n(x)), where b_n(x) are the polynomials defined in A335947.

Original entry on oeis.org

1, 1, 12, 4, 240, 48, 1344, 192, 3840, 1280, 33792, 3072, 5591040, 430080, 245760, 49152, 16711680, 983040, 522977280, 27525120, 1211105280, 173015040, 1447034880, 62914560, 22900899840, 4580179968, 1409286144, 469762048, 116769423360, 4026531840, 7689065201664
Offset: 0

Views

Author

Peter Luschny, Jul 01 2020

Keywords

Comments

The sequence can also be computed without reference to the Bernoulli polynomials (ultimately thanks to the von Staudt-Clausen theorem) by the method of Kellner and Sondow (2019). Compare the SageMath program.

Crossrefs

Programs

  • SageMath
    def A335949(n):
        a = set(prime_divisors(n + 1)) - set([2])
        b = (
            p
            for p in prime_range(3, (n + 2) // (2 + n % 2))
            if not p.divides(n + 1) and sum((n + 1).digits(base=p)) >= p
        )
        p = list(a.union(set(b)))
        return 4 ^ (n // 2) * mul(p)
    print([A335949(n) for n in range(31)])

Formula

a(n) = min {m | m*([x^k] b(n, x)) is an integer for all k = 0..n}.
The odd part of a(n) is squarefree (A000265).
a(n) and A144845(n) have the same odd prime factors.
a(n)/A144845(n) = 4^floor(n/2)/2 for n >= 1.
a(n)/rad(a(n)) = A158302(n+1), (rad=A007947).

A341109 a(n) = denominator(p(n, x)) / (n!*denominator(bernoulli(n, x))), where p(n, x) = Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n) / Product_{j=1..n} (j - x) and E2(n, k) are the second-order Eulerian numbers A201637.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 96, 192, 1152, 768, 1536, 3072, 18432, 36864, 221184, 147456, 884736, 1769472, 10616832, 21233664, 637009920, 424673280, 2548039680, 5096079360, 152882380800, 61152952320, 366917713920, 81537269760, 163074539520, 326149079040, 1956894474240
Offset: 0

Views

Author

Peter Luschny, Feb 06 2021

Keywords

Comments

The challenge is to characterize the sequence purely arithmetically, i.e., without reference to the Eulerian numbers or the Bernoulli polynomials.

Crossrefs

Programs

  • Maple
    Epoly := proc(n, x) add(combinat:-eulerian2(n, k)*binomial(x+k, 2*n), k = 0..n) / mul(j-x, j = 1..n): simplify(expand(%)) end:
    seq(denom(Epoly(n, x)) / (n!*denom(bernoulli(n, x))), n = 0..30);
  • Mathematica
    A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k,0,n}],{p, Prime[Range[n]]}];
    A144845[n_] := Denominator[Together[BernoulliB[n, x]]];
    A163176[n_] := A053657[n] / n!;
    Table[(n + 1) A163176[n + 1] / A144845[n], {n, 0, 30}]
  • Sage
    def A341109(n): # uses[A341108, A318256]
        return A341108(n)//A318256(n)
    print([A341109(n) for n in (0..30)])

Formula

a(n) = A053657(n+1)/(n!*A144845(n)).
a(n) = (n+1)*A163176(n+1)/A144845(n).
a(n) = A341108(n)/A318256(n).
a(n) = A341107(n)*A324369(n+1).
a(n) = A341108(n)/A324370(n+1).
a(n) = A341108(n)*A007947(n+1)/A144845(n).
a(n) = A341108(n)*A324369(n+1)/A195441(n).
prime(n) divides a(k) for k >= A036689(n).
2^(n-1) divides exactly a(n) for n >= 2.

A366572 a(n) = denominator(Bernoulli(n, x)) / denominator(Bernoulli''(n, x)).

Original entry on oeis.org

1, 2, 6, 2, 30, 6, 42, 6, 10, 10, 66, 6, 2730, 210, 2, 6, 510, 10, 798, 42, 110, 330, 138, 2, 546, 546, 2, 2, 870, 30, 14322, 462, 170, 510, 6, 2, 1919190, 51870, 2, 6, 13530, 110, 1806, 42, 46, 690, 1410, 2, 1326, 1326, 22, 66, 1590, 10, 798, 798, 290, 870
Offset: 0

Views

Author

Peter Luschny, Oct 13 2023

Keywords

Crossrefs

Cf. A144845/A366168, A366571, A144845/A324370 (1st derivative).

Programs

  • Maple
    seq(denom(bernoulli(n, x))/denom(diff(diff(bernoulli(n, x), x),x)), n=0..100);
  • PARI
    a(n) = lcm(apply(denominator, Vec(bernpol(n))))/lcm(apply(denominator, Vec(deriv(deriv(bernpol(n)))))); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = A144845(n) / A366168(n).

A319084 Numbers k such that the denominator of the Bernoulli polynomial B_k(x) is the squarefree kernel of k+1.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 27, 29, 35, 59
Offset: 1

Views

Author

Peter Luschny, Sep 12 2018

Keywords

Comments

See A318256 for some background information.

Crossrefs

Formula

Numbers k such that A144845(k) / A007947(k+1) = 1.

A366571 a(n) = denominator(Bernoulli(n, x)) / denominator(Bernoulli'(n, x)).

Original entry on oeis.org

1, 2, 6, 1, 30, 1, 42, 1, 10, 1, 66, 1, 2730, 1, 2, 3, 170, 1, 798, 1, 110, 3, 46, 1, 546, 1, 2, 1, 870, 1, 14322, 1, 170, 3, 2, 1, 1919190, 1, 2, 3, 4510, 1, 1806, 1, 46, 15, 94, 1, 1326, 1, 22, 3, 530, 1, 798, 1, 290, 3, 118, 1, 56786730, 1, 2, 3, 34, 5, 64722
Offset: 0

Views

Author

Peter Luschny, Oct 13 2023

Keywords

Crossrefs

Cf. A144845/A324370, A366572, A144845/A366168 (2nd derivative).

Programs

  • Maple
    seq(denom(bernoulli(n, x))/denom(diff(bernoulli(n, x), x)), n = 0..66);
  • PARI
    a(n) = lcm(apply(denominator, Vec(bernpol(n))))/lcm(apply(denominator, Vec(deriv(bernpol(n))))); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = A144845(n) / A324370(n).

A366573 a(n) = denominator(Bernoulli'(n, x)) / denominator(Bernoulli''(n, x)).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 6, 1, 10, 1, 6, 1, 210, 1, 2, 3, 10, 1, 42, 1, 110, 3, 2, 1, 546, 1, 2, 1, 30, 1, 462, 1, 170, 3, 2, 1, 51870, 1, 2, 3, 110, 1, 42, 1, 46, 15, 2, 1, 1326, 1, 22, 3, 10, 1, 798, 1, 290, 3, 2, 1, 930930, 1, 2, 3, 34, 5, 966, 1, 2, 3, 110, 1
Offset: 0

Views

Author

Peter Luschny, Oct 13 2023

Keywords

Crossrefs

Programs

  • Maple
    seq(denom(diff(bernoulli(n, x), x))/denom(diff(diff(bernoulli(n, x), x),x)), n = 0..100);
  • PARI
    a(n) = lcm(apply(denominator, Vec(deriv(bernpol(n)))))/ lcm(apply(denominator, Vec(deriv(deriv(bernpol(n)))))); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = A324370(n) / A366168(n).
Previous Showing 21-27 of 27 results.