A192477
G.f. satisfies: A(x) = x*Product_{n>=1} (1 + x*A(x)^n).
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 9, 23, 49, 120, 279, 682, 1654, 4079, 10129, 25277, 63639, 160685, 408373, 1041197, 2666364, 6850405, 17657214, 45644461, 118303445, 307385607, 800463683, 2088900834, 5461793800, 14306839474, 37539357792, 98655089606
Offset: 1
G.f.: A(x) = x + x^3 + x^4 + 2*x^5 + 5*x^6 + 9*x^7 + 23*x^8 + 49*x^9 +...
The g.f. A = A(x) satisfies the relations:
A = x*(1 + x*A)*(1 + x*A^2)*(1 + x*A^3)*(1 + x*A^4)*...
A = x*(1 + x*A/(1-A) + x^2*A^3/((1-A)*(1-A^2)) + x^3*A^6/((1-A)*(1-A^2)*(1-A^3)) + x^4*A^10/((1-A)*(1-A^2)*(1-A^3)*(1-A^4)) +...)
A = x*(1+x*A) + x^2*A^2*(1+x*A^3)*(1+x*A)/(1-A) + x^3*A^7*(1+x*A^5)*(1+x*A)*(1+x*A^2)/((1-A)*(1-A^2)) + x^4*A^15*(1+x*A^7)*(1+x*A)*(1+x*A^2)*(1+x*A^3)/((1-A)*(1-A^2)*(1-A^3)) +...
-
nmax = 40; A[] = 0; Do[A[x] = x*Product[1 + x*A[x]^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* Vaclav Kotesovec, Sep 29 2023 *)
(* Calculation of constants {d,c}: *) {1/r, Sqrt[-s*((1 + r)*Log[1 - s] - Log[s] + (1 + r)*QPolyGamma[0, Log[-r]/Log[s], s]) / (2*Pi*r*Log[s] * Derivative[0, 2][QPochhammer][-r, s])]} /. FindRoot[{r*QPochhammer[-r, s] == s*(1 + r), r*Derivative[0, 1][QPochhammer][-r, s] == 1 + r}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] // Chop (* Vaclav Kotesovec, Sep 29 2023 *)
-
{a(n) = my(A=x+x^2);for(i=1,n, A = x*prod(m=1,n,1+x*A^m +x*O(x^n)));polcoeff(A,n)}
for(n=0,35,print1(a(n),", "))
-
{a(n) = my(A=x+x^2);for(i=1,n, A = x*sum(m=0,n,x^m*A^(m*(m+1)/2)/prod(k=1,m,1-A^k +x*O(x^n))));polcoeff(A,n)}
-
{a(n) = my(A=x+x^2);for(i=1,n, A = x*sum(m=0,n,x^m*A^(m*(3*m+1)/2)*(1+x*A^(2*m+1))*prod(k=1, m, (1+x*A^k)/(1-A^k +x*O(x^n))))); polcoeff(A, n)}
A302287
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x))^k.
Original entry on oeis.org
1, 1, 3, 10, 31, 102, 342, 1167, 4046, 14213, 50464, 180847, 653296, 2376406, 8697194, 32002219, 118322499, 439364380, 1637827543, 6126870808, 22993190147, 86542625565, 326607659370, 1235650643059, 4685502714403, 17804713119018, 67790202024365, 258579199501709, 988012193672223
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 10*x^3 + 31*x^4 + 102*x^5 + 342*x^6 + 1167*x^7 + 4046*x^8 + 14213*x^9 + 50464*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x))^2 * (1 + x^3*A(x))^3 * (1 + x^4*A(x))^4 * ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
A302289
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + k*x^k*A(x)).
Original entry on oeis.org
1, 1, 3, 10, 30, 98, 323, 1083, 3684, 12710, 44272, 155608, 551259, 1965952, 7052990, 25436711, 92168542, 335376653, 1224991077, 4489818110, 16507728007, 60868469848, 225030777305, 833961333273, 3097594423724, 11529400593846, 42996077073284, 160632616725238, 601132116489719, 2253153800577748
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 10*x^3 + 30*x^4 + 98*x^5 + 323*x^6 + 1083*x^7 + 3684*x^8 + 12710*x^9 + 44272*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + 2*x^2*A(x)) * (1 + 3*x^3*A(x)) * (1 + 4*x^4*A(x)) * ...
A192785
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n)*(1 + x^(2*n)*A(x)^2).
Original entry on oeis.org
1, 1, 2, 5, 11, 29, 75, 203, 557, 1561, 4427, 12706, 36819, 107576, 316579, 937471, 2791487, 8352973, 25104573, 75749240, 229379444, 696851166, 2123304184, 6487295518, 19870096689, 61001089214, 187673207413, 578532522637, 1786712575547
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 29*x^5 + 75*x^6 + ...
The g.f. A = A(x) satisfies the following relations:
A = (1+x)*(1+x^2*A^2)* (1+x^2)*(1+x^4*A^2)* (1+x^3)*(1+x^6*A^2)* ...
A = 1 + x*(1+x*A^2)/(1-x) + x^3*(1+x*A^2)*(1+x^2*A^2)/((1-x)*(1-x^2)) + x^6*(1+x*A^2)*(1+x^2*A^2)*(1+x^3*A^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k)*(1 + x^(2*k)*A[x]^2), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Mar 04 2024 *)
(* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(-r*s*(1 + s^2) * Log[r]^2 * ((s + s^3)*Derivative[0, 1][QPochhammer][-1, r] + r*QPochhammer[-1, r]^2 * Derivative[0, 1][QPochhammer][-s^2, r^2]))/ (2*Pi * QPochhammer[-1, r]*(4*s^2*Log[r]^2 + (1 + s^2)^2 * QPolyGamma[1, Log[-s^2]/(2*Log[r]), r^2]))]} /. FindRoot[{(QPochhammer[-1, r]*QPochhammer[-s^2, r^2])/(2 + 2*s^2) == s, 1 + 3*s^2 + (1 + s^2)*((Log[1 - r^2] + QPolyGamma[0, Log[-s^2]/(2*Log[r]), r^2])/Log[r]) == 0}, {r, 1/3}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Mar 04 2024 *)
-
{a(n) = my(A=1+x); for(i=1, n, A = prod(m=1, n, (1 + x^m)*(1 + x^(2*m)*A^2 +x*O(x^n)))); polcoeff(A, n)}
-
{a(n) = my(A=1+x); for(i=1, n, A = 1 + sum(m=1, sqrtint(2*n), x^(m*(m+1)/2)*prod(k=1, m, (1 + A^2*x^k)/(1 - x^k+x*O(x^n))))); polcoeff(A, n)}
Comments