cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A192477 G.f. satisfies: A(x) = x*Product_{n>=1} (1 + x*A(x)^n).

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 9, 23, 49, 120, 279, 682, 1654, 4079, 10129, 25277, 63639, 160685, 408373, 1041197, 2666364, 6850405, 17657214, 45644461, 118303445, 307385607, 800463683, 2088900834, 5461793800, 14306839474, 37539357792, 98655089606
Offset: 1

Views

Author

Paul D. Hanna, Jul 01 2011

Keywords

Comments

Related q-series identity (Euler):
Product_{n>=1} (1+x*q^n) = Sum_{n>=0} x^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k); here q=A(x).

Examples

			G.f.: A(x) = x + x^3 + x^4 + 2*x^5 + 5*x^6 + 9*x^7 + 23*x^8 + 49*x^9 +...
The g.f. A = A(x) satisfies the relations:
A = x*(1 + x*A)*(1 + x*A^2)*(1 + x*A^3)*(1 + x*A^4)*...
A = x*(1 + x*A/(1-A) + x^2*A^3/((1-A)*(1-A^2)) + x^3*A^6/((1-A)*(1-A^2)*(1-A^3)) + x^4*A^10/((1-A)*(1-A^2)*(1-A^3)*(1-A^4)) +...)
A = x*(1+x*A) + x^2*A^2*(1+x*A^3)*(1+x*A)/(1-A) + x^3*A^7*(1+x*A^5)*(1+x*A)*(1+x*A^2)/((1-A)*(1-A^2)) + x^4*A^15*(1+x*A^7)*(1+x*A)*(1+x*A^2)*(1+x*A^3)/((1-A)*(1-A^2)*(1-A^3)) +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = x*Product[1 + x*A[x]^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* Vaclav Kotesovec, Sep 29 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[-s*((1 + r)*Log[1 - s] - Log[s] + (1 + r)*QPolyGamma[0, Log[-r]/Log[s], s]) / (2*Pi*r*Log[s] * Derivative[0, 2][QPochhammer][-r, s])]} /. FindRoot[{r*QPochhammer[-r, s] == s*(1 + r), r*Derivative[0, 1][QPochhammer][-r, s] == 1 + r}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] // Chop (* Vaclav Kotesovec, Sep 29 2023 *)
  • PARI
    {a(n) = my(A=x+x^2);for(i=1,n, A = x*prod(m=1,n,1+x*A^m +x*O(x^n)));polcoeff(A,n)}
    for(n=0,35,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=x+x^2);for(i=1,n, A = x*sum(m=0,n,x^m*A^(m*(m+1)/2)/prod(k=1,m,1-A^k +x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n) = my(A=x+x^2);for(i=1,n, A = x*sum(m=0,n,x^m*A^(m*(3*m+1)/2)*(1+x*A^(2*m+1))*prod(k=1, m, (1+x*A^k)/(1-A^k +x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^(n*(n+1)/2) / Product_{k=1..n} (1 - A(x)^k).
G.f. satisfies: A(x) = x*Sum_{n>=0} x^n*A(x)^(n*(3*n+1)/2) * (1 + x*A(x)^(2*n+1)) * Product_{k=1..n} (1 + x*A(x)^k)/(1 - A(x)^k) due to Sylvester's identity.
a(n) ~ c * d^n / n^(3/2), where d = 2.7572424362046888622202089939389819515998799032935772914495266456251... and c = 0.141814541288727417106640836565322805487015901140336362320896774237... - Vaclav Kotesovec, Sep 29 2023

A302287 G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x))^k.

Original entry on oeis.org

1, 1, 3, 10, 31, 102, 342, 1167, 4046, 14213, 50464, 180847, 653296, 2376406, 8697194, 32002219, 118322499, 439364380, 1637827543, 6126870808, 22993190147, 86542625565, 326607659370, 1235650643059, 4685502714403, 17804713119018, 67790202024365, 258579199501709, 988012193672223
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 10*x^3 + 31*x^4 + 102*x^5 + 342*x^6 + 1167*x^7 + 4046*x^8 + 14213*x^9 + 50464*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x))^2 * (1 + x^3*A(x))^3 * (1 + x^4*A(x))^4 * ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 4.01604513838270620496843653760987690323... and c = 2.07544072297996637757124624302382219... - Vaclav Kotesovec, Sep 27 2023
Radius of convergence r = 0.2490011853807768883971843288180859269 = 1/d and A(r) = 3.261386924996517219078267128734843819... satisfy (1) A(r) = 1 / Sum_{n>=1} n*r^n/(1 + r^n*A(r)) and (2) A(r) = Product_{n>=1} (1 + r^n*A(r))^n. - Paul D. Hanna, Mar 02 2024

A302289 G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + k*x^k*A(x)).

Original entry on oeis.org

1, 1, 3, 10, 30, 98, 323, 1083, 3684, 12710, 44272, 155608, 551259, 1965952, 7052990, 25436711, 92168542, 335376653, 1224991077, 4489818110, 16507728007, 60868469848, 225030777305, 833961333273, 3097594423724, 11529400593846, 42996077073284, 160632616725238, 601132116489719, 2253153800577748
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 10*x^3 + 30*x^4 + 98*x^5 + 323*x^6 + 1083*x^7 + 3684*x^8 + 12710*x^9 + 44272*x^10 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + 2*x^2*A(x)) * (1 + 3*x^3*A(x)) * (1 + 4*x^4*A(x)) * ...
		

Crossrefs

A192785 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n)*(1 + x^(2*n)*A(x)^2).

Original entry on oeis.org

1, 1, 2, 5, 11, 29, 75, 203, 557, 1561, 4427, 12706, 36819, 107576, 316579, 937471, 2791487, 8352973, 25104573, 75749240, 229379444, 696851166, 2123304184, 6487295518, 19870096689, 61001089214, 187673207413, 578532522637, 1786712575547
Offset: 0

Views

Author

Paul D. Hanna, Jul 10 2011

Keywords

Comments

Related q-series identity of Lebesgue:
Product_{n>=1} (1 + q^n)*(1 + z*q^(2*n)) = 1 + Sum_{n>=1} q^(n*(n+1)/2) * Product_{k=1..n} (1 + z*q^k)/(1 - x^k); here q=x, z=A(x)^2.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 29*x^5 + 75*x^6 + ...
The g.f. A = A(x) satisfies the following relations:
A = (1+x)*(1+x^2*A^2)* (1+x^2)*(1+x^4*A^2)* (1+x^3)*(1+x^6*A^2)* ...
A = 1 + x*(1+x*A^2)/(1-x) + x^3*(1+x*A^2)*(1+x^2*A^2)/((1-x)*(1-x^2)) + x^6*(1+x*A^2)*(1+x^2*A^2)*(1+x^3*A^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k)*(1 + x^(2*k)*A[x]^2), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Mar 04 2024 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(-r*s*(1 + s^2) * Log[r]^2 * ((s + s^3)*Derivative[0, 1][QPochhammer][-1, r] + r*QPochhammer[-1, r]^2 * Derivative[0, 1][QPochhammer][-s^2, r^2]))/ (2*Pi * QPochhammer[-1, r]*(4*s^2*Log[r]^2 + (1 + s^2)^2 * QPolyGamma[1, Log[-s^2]/(2*Log[r]), r^2]))]} /. FindRoot[{(QPochhammer[-1, r]*QPochhammer[-s^2, r^2])/(2 + 2*s^2) == s, 1 + 3*s^2 + (1 + s^2)*((Log[1 - r^2] + QPolyGamma[0, Log[-s^2]/(2*Log[r]), r^2])/Log[r]) == 0}, {r, 1/3}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Mar 04 2024 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = prod(m=1, n, (1 + x^m)*(1 + x^(2*m)*A^2 +x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = 1 + sum(m=1, sqrtint(2*n), x^(m*(m+1)/2)*prod(k=1, m, (1 + A^2*x^k)/(1 - x^k+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2)*Product_{k=1..n} (1 + x^k*A(x)^2)/(1 - x^k) due to a Lebesgue identity.
From Vaclav Kotesovec, Mar 04 2024: (Start)
Let A(x) = y, then 2*y*(1 + y^2) = QPochhammer(-1, x) * QPochhammer(-y^2, x^2).
a(n) ~ c * d^n / n^(3/2), where
d = 3.25215123067662173854186425074452291189580485719079882122325713176...,
c = 1.30862302149248708183423553797270804891358016970005788341511105232...
Radius of convergence:
r = 1/d = 0.307488775604062671485504670197489134974315527740973676344144395...
A(r) = s = 2.80682163771231540175973628784430270489737819467327067575665055...
(End)
The values r and A(r) given above also satisfy A(r) = 1 / sqrt( Sum_{n>=1} 2*r^(2*n)/(1 + r^(2*n)*A(r)^2) ). - Paul D. Hanna, Mar 06 2024
Previous Showing 11-14 of 14 results.