A147700
Late-growing permutations: number of permutations of 11 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 58786, 11377249621920, 32371149339259024610992, 4228135363283244543270651711564000, 2507864854806378467366565303442444098886802152
Offset: 1
A147705
Late-growing permutations: number of permutations of 12 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 208012, 260363981732400, 6692030708288364864188400, 10232120200642411474243152429724152000, 86658540597515379404676466333427087630920602972939
Offset: 1
A147707
Late-growing permutations: number of permutations of 13 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 742900, 6034149862347600, 1406943391115083641966787200, 25264175056254327045276801827351798400000
Offset: 1
A147712
Late-growing permutations: number of permutations of 14 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 2674440, 141371511060715200, 300084647544974128326709244080, 63459439063595192178662944522933222953984000
Offset: 1
A147713
Late-growing permutations: number of permutations of 15 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 9694845, 3343436236585914480, 64804916367088484487100154177496, 161780768091373089273770663805075564895813872000
Offset: 1
A147714
Late-growing permutations: number of permutations of 16 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 35357670, 79726203788589122490, 14147534294176318279439513521917987, 417809370210357850902657289546398207489797059635000
Offset: 1
A147715
Late-growing permutations: number of permutations of 17 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 129644790, 1914992149823954412750, 3118154713099658349261989389351453752, 1091385182415179567904447175900607727196876211756373000
Offset: 1
A147717
Late-growing permutations: number of permutations of 18 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 477638700, 46295775130831740013500, 693090538757877947419844421229560759330, 2879839278762149413553488830486463735739514876362382240000
Offset: 1
A147769
Late-growing permutations: number of permutations of 19 indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations.
Original entry on oeis.org
1, 1767263190, 1125718321602329678223000, 155225932761938574730157553835938696696000, 7667961765084109378347562069301502363151989537397618954230000
Offset: 1
A145874
Number of permutations of the numbers 1, 2, ..., n such that for all 1 <= k <= n the average of the first k numbers is at least the average of all n numbers.
Original entry on oeis.org
1, 1, 3, 7, 35, 139, 1001, 5701, 53109, 402985, 4605271
Offset: 1
For n = 3, the 3 permutations are (2,3,1), (3,1,2) and (3,2,1).
-
a(n) = {nbok = 0; avg = (n+1)/2; for (j = 1, n!, perm = numtoperm(n, j); ok = 1; for (k = 1, n, if (sum(j=1, k, perm[j])/k < avg, ok = 0; break;);); if (ok, nbok++);); nbok;} \\ Michel Marcus, Aug 12 2013
Comments