cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A155982 Decimal expansion of log_12 (24).

Original entry on oeis.org

1, 2, 7, 8, 9, 4, 2, 9, 4, 5, 6, 5, 1, 1, 2, 9, 8, 4, 3, 1, 9, 1, 0, 4, 4, 0, 8, 1, 0, 3, 7, 8, 8, 5, 6, 0, 3, 1, 0, 4, 7, 9, 4, 3, 3, 7, 5, 9, 6, 4, 7, 3, 0, 6, 7, 9, 7, 2, 6, 9, 6, 0, 0, 3, 4, 0, 8, 2, 7, 6, 5, 0, 5, 2, 4, 0, 4, 6, 7, 5, 5, 9, 0, 8, 0, 6, 9, 7, 2, 1, 7, 3, 5, 0, 3, 6, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.2789429456511298431910440810378856031047943375964730679726...
		

Crossrefs

Cf. decimal expansion of log_12(m): A152778 (m=2), A153015 (m=3), A153105 (m=4), A153306 (m=5), A153589 (m=6), A153622 (m=7), A153813 (m=8), A154012 (m=9), A154162 (m=10), A154183 (m=11), A154395 (m=13), A154480 (m=14), A154582 (m=15), A154802 (m=16), A154884 (m=17), A154969 (m=18), A155064 (m=19), A155524 (m=20), A155679 (m=21), A155749 (m=22), A155832 (m=23), this sequence.

Programs

  • Mathematica
    RealDigits[Log[12,24],10,120][[1]] (* Harvey P. Dale, Feb 22 2012 *)

Formula

Equals 1 + A152778. - R. J. Mathar, May 09 2010

A154196 Decimal expansion of log_3 (12).

Original entry on oeis.org

2, 2, 6, 1, 8, 5, 9, 5, 0, 7, 1, 4, 2, 9, 1, 4, 8, 7, 4, 1, 9, 9, 0, 5, 4, 2, 2, 8, 6, 8, 5, 5, 2, 1, 7, 0, 8, 5, 9, 9, 1, 7, 1, 2, 8, 0, 2, 6, 3, 7, 6, 0, 8, 5, 5, 7, 4, 1, 3, 0, 9, 8, 8, 7, 6, 7, 7, 3, 7, 0, 4, 0, 2, 7, 6, 1, 8, 2, 9, 6, 1, 0, 1, 2, 2, 3, 4, 5, 3, 7, 7, 0, 9, 8, 9, 0, 3, 4, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			2.2618595071429148741990542286855217085991712802637608557413...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[3, 12], 10, 120][[1]] (* Vincenzo Librandi, Aug 29 2013 *)

Formula

From Amiram Eldar, May 04 2023: (Start)
Equals 1 + 2 * log_3(2) = 1 + 2 * A102525.
Equasl 1/A153015. (End)
Previous Showing 21-22 of 22 results.