cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A303359 Bi-unitary near-perfect numbers: bi-unitary abundant numbers k such that the abundance d = bsigma(k) - 2*k is a bi-unitary divisor of k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).

Original entry on oeis.org

24, 40, 56, 80, 88, 104, 120, 224, 360, 432, 672, 832, 992, 1008, 1296, 1456, 1504, 1584, 1888, 1952, 2016, 2160, 2800, 3800, 5624, 5800, 7424, 7616, 9112, 10080, 11096, 13736, 15872, 16256, 17816, 22848, 24448, 28544, 30592, 32128, 33728, 51136, 62464, 66368
Offset: 1

Views

Author

Amiram Eldar and Michael De Vlieger, Apr 22 2018

Keywords

Comments

The bi-unitary version of A181595.

Examples

			24 is in the sequence since the sum of its bi-unitary divisors is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 and 60 - 2*24 = 12 is a bi-unitary divisor of 24.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; biunitaryDivisorQ[ div_, n_] := If[Mod[#2, #1]==0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]]&, {#1, #2/#1}]]==1, False]& @@{div, n}; aQ[n_] := Module[{d=bsigma[n]-2n},If[d<=0, False,biunitaryDivisorQ[d,n]]]; s={}; Do[If[ aQ[n], AppendTo[s,n] ], {n, 1, 10000}]; s
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    isok(n) = my(divs = biudivs(n), sig = vecsum(divs)); (sig > 2*n) && vecsearch(divs, sig - 2*n); \\ Michel Marcus, Apr 27 2018

A364976 3-abundant numbers k such that k/(sigma(k)-3*k) is an integer.

Original entry on oeis.org

180, 240, 360, 420, 540, 600, 780, 1080, 1344, 1872, 1890, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3744, 4284, 4320, 4680, 5292, 5376, 5796, 6048, 6552, 7128, 7440, 8190, 10416, 13776, 14850, 18600, 19824, 19872, 20496, 21528, 22932, 25056, 26208, 26496, 26784
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

Analogous to A153501 as 3-abundant numbers (A068403) are analogous to abundant numbers (A005101).
Numbers k such that the sum of the divisors of k except for one of them is equal to 3*k.

Examples

			180 is a term since sigma(180) - 3*180 = 6 > 0 and 180 is divisible by 6.
		

Crossrefs

Subsequence of A068403.
A027687 is a subsequence.

Programs

  • Mathematica
    Select[Range[27000], (d = DivisorSigma[1, #] - 3*#) > 0 && Divisible[#, d] &]
  • PARI
    is(n) = {my(d = sigma(n) - 3*n); d > 0 && n%d == 0;}

A181599 Numbers m with divisor 16 | m and abundance sigma(m)-2*m = 16.

Original entry on oeis.org

1504, 30592, 4526272, 8353792, 361702144, 1081850752, 1845991216, 2146926592, 21818579968, 34357510144, 228354264064, 549746900992, 2169800814592, 8796057370624, 24038405705152, 80952364306432, 140737345748992, 2737658648639872, 23810602502029312, 36979953305070592
Offset: 1

Views

Author

Vladimir Shevelev, Nov 01 2010

Keywords

Crossrefs

Formula

A008598 INTERSECT A141547. - R. J. Mathar, Nov 04 2010

Extensions

Definition rephrased - R. J. Mathar, Nov 04 2010
a(9)-a(13) from Donovan Johnson, Dec 08 2011
a(14)-a(20) from the b-file at A141547 added by Amiram Eldar, Aug 03 2024
Previous Showing 11-13 of 13 results.