cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A155958 Decimal expansion of log_5 (24).

Original entry on oeis.org

1, 9, 7, 4, 6, 3, 5, 8, 6, 8, 7, 0, 6, 1, 6, 4, 4, 4, 7, 1, 4, 4, 8, 8, 6, 0, 6, 5, 5, 6, 2, 9, 4, 9, 1, 4, 9, 2, 3, 4, 0, 4, 5, 1, 9, 6, 1, 1, 2, 4, 4, 8, 5, 5, 7, 6, 2, 5, 9, 8, 4, 8, 0, 5, 3, 7, 5, 7, 3, 2, 4, 1, 0, 5, 4, 0, 5, 6, 9, 7, 9, 5, 5, 8, 8, 0, 4, 8
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			1.9746358687061644471448860655629491492340451961124485576259...
		

Crossrefs

Cf. decimal expansion of log_5(m): A152675 (m=2), A152914 (m=3), A153101 (m=4), A153461 (m=6), A153616 (m=7), A153739 (m=8), A154008 (m=9), A154156 (m=10), A154177 (m=11), A154198 (m=12), A154265 (m=13), A154465 (m=14), A154564 (m=15), A154759 (m=16), A154850 (m=17), A154910 (m=18), A155035 (m=19), A155184 (m=20), A155553 (m=21), A155696 (m=22), A155821 (m=23), this sequence.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(24)/Log(5); // G. C. Greubel, Sep 14 2018
  • Mathematica
    RealDigits[Log[5, 24], 10, 100][[1]] (* Vincenzo Librandi, Aug 31 2013 *)
  • PARI
    default(realprecision, 100); log(24)/log(5) \\ G. C. Greubel, Sep 14 2018
    

A242823 Perimeter (rounded down) of Pi-shaped box fractal after n iterations.

Original entry on oeis.org

1, 2, 5, 15, 39, 103, 269, 700, 1821, 4736, 12313, 32016, 83242, 216429, 562716, 1463063, 3803966, 9890311, 25714810, 66858508, 173832121, 451963515, 1175105140, 3055273364, 7943710747, 20653647942, 53699484649
Offset: 0

Views

Author

Kival Ngaokrajang, May 23 2014

Keywords

Comments

Let 13 boxes be placed into a 5 X 5 square grid, arranged in the shape of a capital letter Pi (see illustration). Also let the initial side length of a box = 1/28. The side length of a box after n iterations will be 1/(4*A005050(n)) i.e., 1/28, 1/140, 1/700, 1/3500, ... The sides count (any lengths) is 12*A001019(n), i.e., 12, 108, 972, 8748, ... The Hausdorff dimension = log(13)/log(5) = 1.593692641167... or A154265.

Crossrefs

Programs

  • PARI
    {a=28;b=1;print1(1,", "); for (n=2,50, b=b*0.2; a=(a*13-16*2^(n-1)-8); print1(floor(a*b/28),", "))}
Previous Showing 21-22 of 22 results.