A154421 Number of ways to express n as the sum of an odd prime, a positive Fibonacci number and an even Lucas number.
Keywords
Examples
For n=8 the a(8)=3 solutions are 3 + F_4 + L_0, 3 + F_2 + L_3, 5 + F_2 + L_0.
References
- R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36(1971), 103-107.
Links
- Zhi-Wei SUN, Table of n, a(n), n=1..50000.
- D. S. McNeil, Sun's strong conjecture
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t
- Zhi-Wei Sun, A summary concerning my conjecture n=p+F_s+F_t (II)
- Terence Tao, A remark on primality testing and decimal expansions, Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413.
- K. J. Wu and Z. W. Sun, Covers of the integers with odd moduli and their applications to the forms x^m-2^n and x^2-F_{3n}/2, Math. Comp. 78 (2009) 1853, [DOI], arXiv:math.NT/0702382
Programs
-
Mathematica
PQ[m_]:=m>2&&PrimeQ[m] RN[n_]:=Sum[If[PQ[n-2*Fibonacci[3x+1]+Fibonacci[3x]-Fibonacci[y]],1,0], {x,0,Log[2,n]},{y,2,2*Log[2,Max[2,n-2*Fibonacci[3x+1]+Fibonacci[3x]]]}] Do[Print[n," ",RN[n]];Continue,{n,1,50000}]
Formula
: p+F_s+L_{3t}=n with p an odd prime, s>1 and t nonnegative}|.
Comments