cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A154403 Number of ways to write n as a sum a_1 + ... + a_k where a_i >= 2 * a_{i-1} > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 11, 11, 12, 14, 14, 15, 17, 18, 19, 22, 23, 24, 27, 28, 30, 33, 35, 37, 40, 42, 44, 48, 50, 53, 58, 60, 63, 68, 71, 74, 80, 84, 87, 93, 97, 101, 107, 112, 117, 124, 129, 135, 143, 148, 155, 164, 170, 177, 187, 194
Offset: 0

Views

Author

Vladeta Jovovic, Jan 08 2009

Keywords

Crossrefs

Formula

G.f.: x+(1/(1+x))/Product_{k>0}(1-x^(2^k-1)).

Extensions

More terms from R. J. Mathar, Jan 21 2009

A326812 Expansion of Sum_{k>=1} (2^k - 1) * x^(2^k - 1) / (1 - x^(2^k - 1)).

Original entry on oeis.org

1, 1, 4, 1, 1, 4, 8, 1, 4, 1, 1, 4, 1, 8, 19, 1, 1, 4, 1, 1, 11, 1, 1, 4, 1, 1, 4, 8, 1, 19, 32, 1, 4, 1, 8, 4, 1, 1, 4, 1, 1, 11, 1, 1, 19, 1, 1, 4, 8, 1, 4, 1, 1, 4, 1, 8, 4, 1, 1, 19, 1, 32, 74, 1, 1, 4, 1, 1, 4, 8, 1, 4, 1, 1, 19, 1, 8, 4, 1, 1, 4, 1, 1, 11, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2019

Keywords

Comments

Sum of divisors of n of the form 2^j - 1 for j >= 1.

Crossrefs

Cf. A000225, A000929, A036987, A038712, A079559, A154402, A161790 (positions of 1's).

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[(2^k - 1) x^(2^k - 1)/(1 - x^(2^k - 1)), {k, 1, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    Table[Sum[Mod[CatalanNumber[d], 2] d, {d, Divisors[n]}], {n, 1, 85}]

Formula

L.g.f.: -log(Product_{n>=1} (1 - x^(2^n - 1))) = Sum_{n>=1} a(n) * x^n / n.
exp(Sum_{n>=1} a(n) * x^n / n) = g.f. for A000929.
exp(Sum_{n>=1} (-1)^(n + 1) * a(n) * x^n / n) = g.f. for A079559.
a(n) = Sum_{d|n} A036987(d) * d.
Previous Showing 41-42 of 42 results.