cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A155707 Numbers expressible as a^2 + k b^2 with nonzero integers a,b, for k=2, k=3, k=5 and k=7.

Original entry on oeis.org

144, 576, 1009, 1129, 1201, 1296, 1801, 1849, 2304, 2521, 2689, 2881, 3049, 3361, 3529, 3600, 3889, 4036, 4201, 4356, 4489, 4516, 4561, 4729, 4804, 5184, 5209, 5569, 5881, 5929, 6841, 7009, 7056, 7204, 7396, 7561, 7681, 8089, 8521, 8689, 8761, 8929
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

Subsequence of A155708.

Crossrefs

Programs

  • Maple
    filter:= proc(x) local k,S;
       if numtheory:-quadres(x,3*5*7)<> 1 then return false fi;
       for k in [2,3,5,7] do
         S:= [isolve(x = a^2 + k*b^2)];
         if andmap(t -> subs(t,a*b) = 0, S) then return false fi;
       od;
       true
    end proc;
    select(filter, [$1..10000]); # Robert Israel, May 14 2025
  • PARI
    isA155707(n,/* optional 2nd arg allows us to get other sequences */c=[7, 5, 3, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
    for(n=1,9999, isA155707(n) & print1(n","))

A155715 Least number expressible as a^2 + k b^2 with positive integers a,b, for each k=1,...,n.

Original entry on oeis.org

2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 32356, 32356, 32356, 44641, 44641, 349924, 349924, 349924, 349924, 1399696, 1399696, 1399696, 3027249, 3027249, 3027249, 4349601, 4349601, 18567396, 18567396, 18567396
Offset: 1

Views

Author

M. F. Hasler, Jan 27 2009

Keywords

Comments

Sequence A028372 considers primes with this property, but allowing for nonzero a,b (which obviously is irrelevant for n>2). Up to n=13, the terms of the present sequence are prime without imposing it explicitely and thus coincide with A028372 except for n=2.
a(n) > 10^9 for n >= 47. [From Donovan Johnson, Sep 29 2009]

Examples

			a(1) = 2 = 1^2 + 1^2 is the least number of the sequence A000404 (sum of positive squares). a(2) = 17 = 1^2 + 4^2 = 3^2 + 2*2^2 is the least number in sequence A000404 to be in sequence A154777 (a^2+2b^2)as well. a(3) = 73 = 3^2 + 8^2 = 1^2 + 2*6^2 = 5^2 + 3*4^2 is the least number in the intersection of sequences A000404, A154777 and A092572 (a^2+3b^2).
		

Crossrefs

Programs

  • PARI
    k=1; for( n=1,10^9, forstep( c=k,1,-1, for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & next(2));next(2)); print1(n",");k++;n--)

Extensions

a(23)-a(46) and b-file from Donovan Johnson, Sep 29 2009

A201613 Primes of the form p^2 + 2q^2 with p and q odd primes.

Original entry on oeis.org

43, 59, 67, 107, 139, 251, 307, 347, 379, 547, 587, 859, 1699, 1867, 1931, 3371, 3499, 3739, 4507, 5059, 5347, 6907, 6971, 7451, 10091, 10627, 10667, 11467, 12491, 18787, 20411, 21227, 22907, 29947, 32059, 32779, 37547, 38651, 39619, 49307, 49747, 53147, 55787
Offset: 1

Views

Author

Zak Seidov, Dec 03 2011

Keywords

Comments

One of primes p, q must be 3, hence we have two sets of primes: 9+2*p^2 and p^2+18 with p > 3.
Note that if we allow 2 for p or q then there is another "set" of primes of the form p^2+8 (q=2) with odd prime p -- this set contains only the prime 17=3^2+8.

Examples

			43=5^2+2*3^2, 59=3^2+2*5^2, 67=7^2+2*3^2.
		

Crossrefs

Subsequence of A260553 and of A154777.

Programs

  • PARI
    list(lim)=my(v=List(),t); forprime(p=5,sqrtint(lim\1-18), if(isprime(t=p^2+18), listput(v,t))); forprime(q=5,sqrtint((lim-9)\2), if(isprime(t=2*q^2+9), listput(v,t))); Set(v) \\ Charles R Greathouse IV, Aug 26 2015

Extensions

Corrected by Charles R Greathouse IV, Aug 26 2015

A338432 Triangle read by rows: T(n, k) = (n - k + 1)^2 + 2*k^2, for n >= 1, and k = 1, 2, ..., n.

Original entry on oeis.org

3, 6, 9, 11, 12, 19, 18, 17, 22, 33, 27, 24, 27, 36, 51, 38, 33, 34, 41, 54, 73, 51, 44, 43, 48, 59, 76, 99, 66, 57, 54, 57, 66, 81, 102, 129, 83, 72, 67, 68, 75, 88, 107, 132, 163, 102, 89, 82, 81, 86, 97, 114, 137, 166, 201
Offset: 1

Views

Author

Wolfdieter Lang, Dec 09 2020

Keywords

Comments

This triangle is obtained from the array A(m, k) = m^2 + 2*k^2, for k and m >= 1, read by upwards antidiagonals. This array A is of interest for representing numbers as a sum of three non-vanishing squares with two squares coinciding.
For the numbers represented this way, see A154777. To find the actual values for m and k (taken positive), given a representable number from A154777, one can also use the number triangle T(n, k) = A(n-k+1, k).
To find the number of representations of value N (from A154777), it is sufficient to consider the rows n >= 1 not exceeding n_{max} = Floor(N, Min), where the sequence Min gives the minima of the numbers in each row: Min = {min(n)}_{n>=1} with min(n) = min(T(n, 1), T(n, 2), ..., T(n, n)) and Floor(N, Min) is the greatest member of Min not exceeding N.
Conjecture: min(n) = T(n, ceiling(n/3)), n >= 1. This is the sequence (n+1)^2 - ceiling(n/3)*(2*(n+1) - 3*ceiling(n/3)) = A071619(n+1) = ceiling((2/3)*(n+1)^2) = (n+1)^2 - floor((1/3)*(n+1)^2) = 3, 6, 11, 17, 24, 33, 43, .... (Proof of these identities by considering the three n (mod 3) cases.)
For the multiplicities of the representable values A154777(n), see A339047.
The author met this representation problem in connection with special triples of integer curvatures in the Descartes-Steiner five circle problem.

Examples

			The triangle T(n, k) begins:
n \ k  1   2   3   4   5   6   7   8   9  10  11  12 ...
1:     3
2:     6   9
3:    11  12  19
4:    18  17  22  33
5:    27  24  27  36  51
6:    38  33  34  41  54  73
7:    51  44  43  48  59  76  99
8:    66  57  54  57  66  81 102 129
9:    83  72  67  68  75  88 107 132 163
10:  102  89  82  81  86  97 114 137 166 201
11:  123 108  99  96  99 108 123 144 171 204 243
12:  146 129 118 113 114 121 134 153 178 209 246 289
...
----------------------------------------------------
T(5, 1) = 5^2 + 2*1^2 = 27 = T(5, 3) = 3^2 + 2*3^2. A338433(11) = 2 for A154777(11) = 27.
T(4, 4) = 1^2 + 2*4^2 = 33 = T(6, 2) = 5^2 + 2*2^2. A338433(12) = 2 for A154777(12) = 33.
T(5, 5) = 1^2 + 2*5^2 = 51 = T(7, 1) = 7^2 + 2*1^2. A338433(20) = 2 for A154777(20) = 51.
T(7, 7) = 1^1 - 2*7^2 = 99 = T(11, 3) = 9^2 + 2*3^2 = 99 = T(11, 5) = 7^2 + 2*5^2. A338433(39) = 3 for A154777(39) = 99.
The first multiplicity 4 appears for 297.
		

Crossrefs

Cf. Columns k = 1..3: A059100, A189833, A241848.
Cf. Diagonals m = 1..4: A058331, A255843, A339048, A255847.

Formula

T(n, k) = A(n - k + 1, k), with the array A(m, k) = m^2 + 2*k^2, for n >= 1 and k = 1, 2, ..., n, and 0 otherwise.
G.f. of T and A column k (offset 0): G(k, x) = (1 + x + 2*(1 - x)^2*k^2)/(1-x)^3, for k >= 1.
G.f. of T diagonal m (A row m) (offset 0): D(m, x) = ((2*(1+x) + (1-x)^2*m^2)/(1-x)^3), for m >= 1.
G.f. of row polynomials in x (that is, g.f. of the triangle): G(z,x) = (3 - 3*z + (2 - 6*x + x^2)*z^2 + (2 + x)*x*z^3)*x*z / ((1 - z)*(1 - x*z))^3.

A155708 Numbers expressible as a^2 + k*b^2 with nonzero integers a,b, for k=2, k=3 and k=5.

Original entry on oeis.org

36, 129, 144, 201, 241, 324, 409, 441, 489, 516, 576, 601, 769, 804, 849, 900, 921, 964, 1009, 1129, 1161, 1201, 1249, 1296, 1321, 1489, 1521, 1569, 1609, 1636, 1641, 1764, 1801, 1809, 1849, 1929, 1956, 2064, 2089, 2161, 2169, 2281, 2304, 2361, 2404, 2521
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S[2]:= {}: S[3]:= {}: S[5]:= {}:
    for a from 1 to floor(sqrt(N)) do
      for k in [2,3,5] do
        S[k]:= S[k] union {seq(a^2 + k*b^2, b = 1 .. floor(sqrt((N-a^2)/k)))}
      od
    od:
    R:= S[2] intersect S[3] intersect S[5]:
    sort(convert(R,list)); # Robert Israel, Jul 11 2018
  • PARI
    isA155708(n, /* optional 2nd arg allows us to get other sequences */c=[5, 3, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
    for(n=1,9999, isA155708(n) & print1(n","))

A155712 Intersection of A092572 and A155716: N = a^2 + 3b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

7, 28, 31, 49, 63, 73, 79, 97, 100, 103, 112, 124, 127, 151, 175, 193, 196, 199, 217, 223, 241, 252, 271, 279, 292, 313, 316, 337, 343, 367, 388, 400, 409, 412, 433, 439, 441, 448, 457, 463, 484, 487, 496, 508, 511, 553, 567, 577, 601, 604, 607, 631, 657, 673
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

From Robert Israel, Jan 19 2025: (Start)
If k is a term, then so is j^2 * k for all positive integers j.
The primes in this sequence appear to be A033199.
(End)

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))),a=1..floor(sqrt(N)))}
       intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))),c=1..floor(sqrt(N)))}:
    sort(convert(A,list)); # Robert Israel, Jan 19 2025
  • PARI
    isA155712(n,/* optional 2nd arg allows to get other sequences */c=[6,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return);1}
    for( n=1,999, isA155712(n) && print1(n",")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025

A155714 Least number expressible as a^2 + p b^2 with positive integers a,b, for each prime p <= prime(n) = A000040(n).

Original entry on oeis.org

3, 12, 36, 144, 144, 4356, 4356, 4356, 7056, 17424, 176400, 2547216, 2547216, 6290064, 6780816, 6780816, 6780816, 6780816, 93315600, 93315600, 271986064, 271986064, 271986064, 271986064, 271986064, 308213136, 308213136, 308213136
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(n) > 10^9 for n >= 33. [From Donovan Johnson, Sep 29 2009]

Crossrefs

Programs

  • PARI
    A155714(k,n=1) = { local(p); until( !n++, p=prime(k); until( !p=precprime(p-1), for( b=1, sqrtint((n-1)\p), issquare(n-p*b^2) & next(2)); next(2)); break);n}
    t=1; for(k=1,30, print1(t=A155714(k,t),","))

Extensions

a(12)-a(32) and b-file from Donovan Johnson, Sep 29 2009

A200977 Smallest number expressible in the form a^2 + 2b^2, with positive integers a and b, in exactly n ways.

Original entry on oeis.org

3, 27, 99, 297, 891, 1683, 8019, 5049, 18513, 15147, 649539, 31977, 314721, 136323, 166617, 95931, 10673289, 351747, 64304361, 287793, 1499553, 8450649, 127680201, 863379, 20160657, 99379467, 5979699, 5180274, 1235641473, 3165723, 50984802, 3933171
Offset: 1

Views

Author

Zak Seidov, Nov 29 2011

Keywords

Comments

Incidentally all terms are multiples of 3.

Examples

			3 = 1+2*1^2.
27 = 3+2*3^2 = 5^2+2*1^2.
99 = 1+2*7^2 = 7^2+2*5^2 = 9^2+2*3^2.
		

Crossrefs

Cf. A154777 (numbers of the form a^2 + 2b^2 with positive integers a, b).

A155575 Intersection of A000404 and A154778: N = a^2 + b^2 = c^2 + 5d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

29, 41, 45, 61, 89, 101, 109, 116, 145, 149, 164, 180, 181, 205, 225, 229, 241, 244, 245, 261, 269, 281, 305, 349, 356, 369, 389, 401, 404, 405, 409, 421, 436, 445, 449, 461, 464, 505, 509, 521, 541, 545, 549, 569, 580, 596, 601, 641, 656, 661, 701, 709, 720
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155565 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155575(n,/* optional 2nd arg allows us to get other sequences */c=[5,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155575(n) & print1(n","))

A155576 Intersection of A000404 and A155716: N = a^2 + b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

10, 25, 40, 58, 73, 90, 97, 100, 106, 145, 160, 193, 202, 225, 232, 241, 250, 265, 292, 298, 313, 337, 346, 360, 388, 394, 400, 409, 424, 433, 457, 490, 505, 522, 538, 577, 580, 586, 601, 625, 634, 640, 657, 673, 730, 745, 769, 772, 778, 808, 810, 841, 865
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155566 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155576(n,/* optional 2nd arg allows us to get other sequences */c=[6,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155576(n) & print1(n","))
Previous Showing 21-30 of 36 results. Next