cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A155710 Intersection of A092572 and A154778: N = a^2 + 3b^2 = c^2 + 5d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

21, 36, 49, 61, 84, 109, 129, 144, 181, 189, 196, 201, 229, 241, 244, 301, 309, 324, 336, 349, 381, 409, 421, 436, 441, 469, 489, 516, 525, 541, 549, 576, 601, 661, 669, 709, 721, 724, 756, 769, 784, 804, 829, 849, 889, 900, 916, 921, 964, 976, 981, 1009, 1021
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155570 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155710(n,/* use optional 2nd arg to get other analogous sequences */c=[5,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1111, isA155710(n) & print1(n","))

A201688 Primes of the form p^2 + 18, where p is prime.

Original entry on oeis.org

43, 67, 139, 307, 379, 547, 859, 1699, 1867, 3499, 3739, 4507, 5059, 5347, 6907, 10627, 11467, 18787, 29947, 32059, 32779, 39619, 49747, 57139, 58099, 66067, 72379, 73459, 78979, 80107, 96739, 97987, 109579, 120427, 134707, 151339, 157627, 187507, 218107
Offset: 1

Views

Author

Zak Seidov, Dec 03 2011

Keywords

Comments

All terms = 3 mod 8.
Corresponding p's: 5, 7, 11, 17, 19, 23, 29, 41, 43, 59, 61, 67, 71, 73, 83, 103, 107, 137, 173, 179, 181, 199, 223, 239, 241, 257, 269, 271, 281, 283, 311, 313, 331, 347, 367, 389, 397, 433, 467, 479, 509. From these, 43, 67, 1699, 3499, 4507, 5059 are themselves of form prime^2+18.

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[x]^2+18, {x,100}], PrimeQ]

A201719 Primes of the form x^2 + 2y^2 such that y^2 + 2x^2 is also prime.

Original entry on oeis.org

11, 19, 43, 59, 67, 83, 107, 139, 163, 179, 211, 251, 307, 331, 419, 443, 467, 491, 563, 571, 587, 619, 643, 811, 883, 907, 947, 971, 1019, 1091, 1123, 1171, 1259, 1291, 1307, 1427, 1531, 1571, 1579, 1667, 1699, 1747, 1787, 1811, 1907, 1979, 1987, 2003, 2011
Offset: 1

Views

Author

Zak Seidov, Dec 04 2011

Keywords

Comments

All terms == 3 mod 8 (cf. A007520).

Examples

			Corresponding pairs of primes:
(a(1),a(2))=(11,19): 11=3^2+2*1^2, 19=1^2+2*3^2
(a(3),a(4))=(43,59): 43=5^2+2*3^2, 59=3^2+2*5^2
(a(5),a(7))=(67,107): 67=7^2+2*3^2, 107=3^2+2*7^2.
		

Crossrefs

Cf. A154777.

Programs

  • Mathematica
    With[{nn=50},Take[Union[Flatten[Select[{#[[1]]^2+2#[[2]]^2,2#[[1]]^2+ #[[2]]^2}&/@Subsets[Range[nn],{2}],And@@PrimeQ[#]&]]],nn]] (* Harvey P. Dale, Sep 15 2013 *)

A155571 Intersection of A000404, A092572 and A154778: N = a^2 + b^2 = c^2 + 3d^2 = e^2 + 5f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

61, 109, 181, 229, 241, 244, 349, 409, 421, 436, 541, 549, 601, 661, 709, 724, 769, 829, 900, 916, 964, 976, 981, 1009, 1021, 1069, 1129, 1201, 1225, 1249, 1321, 1381, 1396, 1429, 1489, 1521, 1525, 1549, 1609, 1621, 1629, 1636, 1669, 1684, 1741, 1744, 1789
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155571(n,/* optional 2nd arg allows us to get other sequences */c=[5,3,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155571(n) & print1(n","))

A155713 Intersection of A154778 and A155716: N = a^2 + 5b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

49, 70, 105, 145, 150, 166, 196, 214, 225, 241, 249, 280, 294, 321, 406, 409, 420, 441, 454, 505, 580, 600, 601, 609, 630, 664, 681, 694, 721, 726, 745, 769, 784, 841, 856, 870, 886, 889, 900, 934, 945, 964, 996, 1009, 1030, 1041, 1089, 1120, 1126, 1129
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155713(n,/* optional 2nd arg allows us to get other sequences */c=[6,5]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155713(n) & print1(n","))

A201544 Odd numbers of the form x^2 + 2*y^2 with positive integers x and y.

Original entry on oeis.org

3, 9, 11, 17, 19, 27, 33, 41, 43, 51, 57, 59, 67, 73, 75, 81, 83, 89, 97, 99, 107, 113, 121, 123, 129, 131, 137, 139, 147, 153, 163, 171, 177, 179, 187, 193, 201, 209, 211, 219, 225, 227, 233, 241, 243, 249, 251, 257, 267, 275, 281, 283, 289, 291, 297, 307
Offset: 1

Views

Author

Zak Seidov, Dec 02 2011

Keywords

Comments

All terms == {1,3} mod 8. Terms that are not multiple of some previous term are prime numbers (see A033203, except for the first term 2 there).
For the numbers with positive proper representations see A225771 without member 1, the subsequence without 75 = 3*5^2, 147 = 3*7^2, 225 = (3*5)^2, 275 = 5^2*11, ... - Wolfdieter Lang, Jan 14 2025

Crossrefs

Intersection of A005408 and A154777.
Cf. A033200 (primes), A033203, A225771.
Previous Showing 31-36 of 36 results.