cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A155717 Numbers of the form N = a^2 + 7b^2 for some positive integers a,b.

Original entry on oeis.org

8, 11, 16, 23, 29, 32, 37, 43, 44, 53, 56, 64, 67, 71, 72, 77, 79, 88, 92, 99, 107, 109, 112, 113, 116, 121, 127, 128, 137, 144, 148, 149, 151, 161, 163, 172, 176, 179, 184, 191, 193, 197, 200, 203, 207, 211, 212, 224, 232, 233, 239, 253, 256, 259, 261, 263, 268
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A020670 (which allows for a and b to be zero).
If N=a^2+7*b^2 is a term then 7*N=(7*b)^2+7*a^2 is also a term. Conversely,if 7*N is a term then N is a term. Example: N=56; N/7=8 is a term, N*7=7^2+7*7^2 is a term. Sequences A154777, A092572 and A154778 have the same property with 7 replaced by prime numbers 2,3 and 5 respectively. - Jerzy R Borysowicz, May 22 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[300], Reduce[a>0 && b>0 && # == a^2 + 7b^2, {a, b}, Integers] =!= False&] (* Jean-François Alcover, Nov 17 2016 *)
  • PARI
    isA155717(n,/* optional 2nd arg allows us to get other sequences */c=7) = { for(b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & return(1))}
    for( n=1,300, isA155717(n) & print1(n","))
    
  • Python
    def aupto(limit):
        cands = range(1, int(limit**.5)+2)
        nums = [a**2 + 7*b**2 for a in cands for b in cands]
        return sorted(set(k for k in nums if k <= limit))
    print(aupto(268)) # Michael S. Branicky, Aug 11 2021

A155715 Least number expressible as a^2 + k b^2 with positive integers a,b, for each k=1,...,n.

Original entry on oeis.org

2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 32356, 32356, 32356, 44641, 44641, 349924, 349924, 349924, 349924, 1399696, 1399696, 1399696, 3027249, 3027249, 3027249, 4349601, 4349601, 18567396, 18567396, 18567396
Offset: 1

Views

Author

M. F. Hasler, Jan 27 2009

Keywords

Comments

Sequence A028372 considers primes with this property, but allowing for nonzero a,b (which obviously is irrelevant for n>2). Up to n=13, the terms of the present sequence are prime without imposing it explicitely and thus coincide with A028372 except for n=2.
a(n) > 10^9 for n >= 47. [From Donovan Johnson, Sep 29 2009]

Examples

			a(1) = 2 = 1^2 + 1^2 is the least number of the sequence A000404 (sum of positive squares). a(2) = 17 = 1^2 + 4^2 = 3^2 + 2*2^2 is the least number in sequence A000404 to be in sequence A154777 (a^2+2b^2)as well. a(3) = 73 = 3^2 + 8^2 = 1^2 + 2*6^2 = 5^2 + 3*4^2 is the least number in the intersection of sequences A000404, A154777 and A092572 (a^2+3b^2).
		

Crossrefs

Programs

  • PARI
    k=1; for( n=1,10^9, forstep( c=k,1,-1, for( b=1,sqrtint((n-1)\c), issquare(n-c*b^2) & next(2));next(2)); print1(n",");k++;n--)

Extensions

a(23)-a(46) and b-file from Donovan Johnson, Sep 29 2009

A155708 Numbers expressible as a^2 + k*b^2 with nonzero integers a,b, for k=2, k=3 and k=5.

Original entry on oeis.org

36, 129, 144, 201, 241, 324, 409, 441, 489, 516, 576, 601, 769, 804, 849, 900, 921, 964, 1009, 1129, 1161, 1201, 1249, 1296, 1321, 1489, 1521, 1569, 1609, 1636, 1641, 1764, 1801, 1809, 1849, 1929, 1956, 2064, 2089, 2161, 2169, 2281, 2304, 2361, 2404, 2521
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S[2]:= {}: S[3]:= {}: S[5]:= {}:
    for a from 1 to floor(sqrt(N)) do
      for k in [2,3,5] do
        S[k]:= S[k] union {seq(a^2 + k*b^2, b = 1 .. floor(sqrt((N-a^2)/k)))}
      od
    od:
    R:= S[2] intersect S[3] intersect S[5]:
    sort(convert(R,list)); # Robert Israel, Jul 11 2018
  • PARI
    isA155708(n, /* optional 2nd arg allows us to get other sequences */c=[5, 3, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
    for(n=1,9999, isA155708(n) & print1(n","))

A155712 Intersection of A092572 and A155716: N = a^2 + 3b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

7, 28, 31, 49, 63, 73, 79, 97, 100, 103, 112, 124, 127, 151, 175, 193, 196, 199, 217, 223, 241, 252, 271, 279, 292, 313, 316, 337, 343, 367, 388, 400, 409, 412, 433, 439, 441, 448, 457, 463, 484, 487, 496, 508, 511, 553, 567, 577, 601, 604, 607, 631, 657, 673
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

From Robert Israel, Jan 19 2025: (Start)
If k is a term, then so is j^2 * k for all positive integers j.
The primes in this sequence appear to be A033199.
(End)

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    A:= {seq(seq(a^2 + 3*b^2, b=1 .. floor(sqrt((N-a^2)/3))),a=1..floor(sqrt(N)))}
       intersect {seq(seq(c^2 + 6*d^2, d = 1 .. floor(sqrt((N-c^2)/6))),c=1..floor(sqrt(N)))}:
    sort(convert(A,list)); # Robert Israel, Jan 19 2025
  • PARI
    isA155712(n,/* optional 2nd arg allows to get other sequences */c=[6,3]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) && next(2)); return);1}
    for( n=1,999, isA155712(n) && print1(n",")) \\ Update to modern PARI syntax (& -> &&) by M. F. Hasler, Jan 18 2025

A155714 Least number expressible as a^2 + p b^2 with positive integers a,b, for each prime p <= prime(n) = A000040(n).

Original entry on oeis.org

3, 12, 36, 144, 144, 4356, 4356, 4356, 7056, 17424, 176400, 2547216, 2547216, 6290064, 6780816, 6780816, 6780816, 6780816, 93315600, 93315600, 271986064, 271986064, 271986064, 271986064, 271986064, 308213136, 308213136, 308213136
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2009

Keywords

Comments

a(n) > 10^9 for n >= 33. [From Donovan Johnson, Sep 29 2009]

Crossrefs

Programs

  • PARI
    A155714(k,n=1) = { local(p); until( !n++, p=prime(k); until( !p=precprime(p-1), for( b=1, sqrtint((n-1)\p), issquare(n-p*b^2) & next(2)); next(2)); break);n}
    t=1; for(k=1,30, print1(t=A155714(k,t),","))

Extensions

a(12)-a(32) and b-file from Donovan Johnson, Sep 29 2009

A155574 Intersection of A154777 and A092572: N = a^2 + 2b^2 = c^2 + 3d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

12, 19, 36, 43, 48, 57, 67, 73, 76, 97, 108, 129, 139, 144, 147, 163, 171, 172, 192, 193, 201, 211, 219, 228, 241, 268, 283, 291, 292, 300, 304, 307, 313, 324, 331, 337, 361, 379, 387, 388, 409, 417, 432, 433, 441, 457, 475, 484, 489, 499, 507, 513, 516, 523
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155564 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155574(n,/* optional 2nd arg allows us to get other sequences */c=[3,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155574(n) & print1(n","))

A155576 Intersection of A000404 and A155716: N = a^2 + b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

10, 25, 40, 58, 73, 90, 97, 100, 106, 145, 160, 193, 202, 225, 232, 241, 250, 265, 292, 298, 313, 337, 346, 360, 388, 394, 400, 409, 424, 433, 457, 490, 505, 522, 538, 577, 580, 586, 601, 625, 634, 640, 657, 673, 730, 745, 769, 772, 778, 808, 810, 841, 865
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155566 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155576(n,/* optional 2nd arg allows us to get other sequences */c=[6,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155576(n) & print1(n","))

A155709 Intersection of A154777 and A155716: N = a^2 + 2b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.

Original entry on oeis.org

22, 33, 73, 88, 97, 118, 121, 132, 150, 166, 177, 193, 198, 214, 225, 241, 249, 262, 292, 294, 297, 313, 321, 337, 352, 358, 388, 393, 409, 433, 438, 441, 454, 457, 472, 484, 502, 528, 537, 550, 577, 582, 600, 601, 649, 657, 664, 673, 681, 694, 708, 726, 753
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Comments

Subsequence of A155569 (where a,b,c,d may be zero).

Crossrefs

Programs

  • PARI
    isA155709(n,/* optional 2nd arg allows us to get other sequences */c=[6,2]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,999, isA155709(n) & print1(n","))

A218697 Semiprimes that can be written in the form x^2 + 5*y^2 with x, y > 0.

Original entry on oeis.org

6, 9, 14, 21, 46, 49, 69, 86, 94, 129, 134, 141, 145, 161, 166, 201, 205, 206, 214, 249, 254, 301, 305, 309, 321, 326, 329, 334, 381, 445, 446, 454, 469, 489, 501, 505, 526, 529, 545, 566, 581, 614, 669, 681, 694, 721, 734, 745, 749, 766, 789, 841, 849, 886, 889
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 04 2012

Keywords

Comments

If two primes which end in 3 or 7 and surpass by 3 a multiple of 4 are multiplied, then their product will be composed of a square and the quintuple of another square. (Fermat (1654))

Examples

			94 = 7^2 + 5*3^2, therefore 94 is a term.
		

References

  • Dedekind R., Theory of Algebraic Integers, Cambridge Univ. Press, 1996 (translation of the 1877 French original), pp. 12-13.

Crossrefs

Programs

  • Mathematica
    n = 889; limx = Sqrt[n]; limy = Sqrt[n/5]; Select[Union@Flatten@Table[x^2 + 5*y^2, {x, limx}, {y, limy}], # <= n && PrimeOmega[#] == 2 &]
    Select[Select[Range[889], PrimeOmega[#] == 2 &], Length@FindInstance[y > 0 && x^2 + 5*y^2 == #, {x, y}, Integers] > 0 &] (* Arkadiusz Wesolowski, Jan 13 2013 *)

Formula

A154778 INTERSECT A001358.

A155573 Intersection of A000404, A154777 and A092572: N = a^2 + b^2 = c^2 + 2d^2 = e^2 + 3f^2 for some positive integers a,b,c,d,e,f.

Original entry on oeis.org

73, 97, 193, 241, 292, 313, 337, 388, 409, 433, 457, 577, 601, 657, 673, 769, 772, 873, 900, 937, 964, 1009, 1033, 1129, 1153, 1156, 1168, 1201, 1249, 1252, 1297, 1321, 1348, 1489, 1521, 1552, 1609, 1636, 1657, 1732, 1737, 1753, 1777, 1801, 1825, 1828
Offset: 1

Views

Author

M. F. Hasler, Jan 25 2009

Keywords

Crossrefs

Programs

  • PARI
    isA155573(n,/* optional 2nd arg allows us to get other sequences */c=[3,2,1]) = { for(i=1,#c, for(b=1,sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return);1}
    for( n=1,1999, isA155573(n) & print1(n","))
Previous Showing 11-20 of 21 results. Next