cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A066487 a(n) = min( x : x^4 + n^4 = 0 mod (x+n-1) ).

Original entry on oeis.org

1, 16, 95, 334, 877, 12, 3691, 66, 10649, 16552, 31, 6, 49285, 66964, 89027, 2, 149041, 216, 13823, 22, 93, 20, 30219, 170, 113, 847576, 988391, 1146070, 77733, 948, 11, 1972066, 131409, 2522224, 2836927, 187038, 3553741, 3959260, 4398539, 286634, 5385721, 48, 2351
Offset: 1

Views

Author

Benoit Cloitre, Jan 02 2002

Keywords

Comments

From Robert Israel, Feb 13 2019: (Start)
a(n)+n-1 is the least divisor of (n-1)^4 + n^4 that is not less than n.
In particular, a(n) = (n-1)^4 + n^4 - n + 1 if (n-1)^4 + n^4 is prime, i.e. if n-1 is in A155211; otherwise a(n) <= ((n-1)^4 + n^4)/17 - n + 1 (because the least prime that can divide (n-1)^4 + n^4 is 17). (End)

Crossrefs

Programs

  • Maple
    f:= proc(n) min(select(`>=`,numtheory:-divisors((n-1)^4+n^4),n))-n+1 end proc:
    map(f, [$1..100]); # Robert Israel, Feb 13 2019
  • Mathematica
    a[n_] := For[x = 1, True, x++, If[Mod[x^4 + n^4, x + n - 1] == 0, Return[x]]]; Array[a, 30] (* Jean-François Alcover, Feb 17 2018 *)
  • PARI
    a(n) = {my(k=1); while((k^4+n^4)%(k+n-1) != 0, k++); k; } \\ Altug Alkan, Feb 17 2018

Extensions

More terms from Jean-François Alcover, Feb 17 2018

A241265 Numbers n such that n^4+(n+1)^4 is not prime.

Original entry on oeis.org

5, 7, 10, 11, 15, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 32, 35, 39, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 69, 70, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 90, 91, 92, 93, 94, 95, 96, 99, 100, 101
Offset: 1

Views

Author

Vincenzo Librandi, Apr 20 2014

Keywords

Crossrefs

Complement of A155211.

Programs

  • Magma
    [n: n in [1..200] | not IsPrime(n^4+(n+1)^4)];
  • Mathematica
    Select[Range[200], ! PrimeQ[#^4 + (# + 1)^4] &]
    Position[Total/@Partition[Range[120]^4,2,1],?CompositeQ]//Flatten (* _Harvey P. Dale, Mar 31 2024 *)

Formula

7 is in this sequence because 7^4+8^4 = 6497 = 73*89.
Previous Showing 11-12 of 12 results.