cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A256615 Decimal expansion of log(Gamma(1/24)).

Original entry on oeis.org

3, 1, 5, 5, 4, 0, 2, 8, 7, 7, 3, 8, 1, 1, 4, 4, 7, 2, 2, 7, 7, 4, 6, 6, 4, 4, 5, 5, 7, 3, 9, 8, 0, 5, 6, 9, 0, 4, 5, 8, 3, 5, 1, 5, 8, 8, 8, 4, 4, 0, 2, 4, 8, 1, 9, 5, 7, 7, 7, 7, 1, 4, 5, 4, 3, 5, 3, 2, 0, 3, 7, 0, 6, 5, 2, 8, 9, 7, 5, 4, 9, 2, 4, 4, 8, 2, 5, 4, 9, 2, 4, 1, 1, 3, 8, 1, 7, 2, 7, 1, 7, 5, 0, 1
Offset: 1

Views

Author

Keywords

Examples

			3.155402877381144722774664455739805690458351588844024...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256616 (k=48).

Programs

  • Maple
    evalf(log(GAMMA(1/24)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/24]],10,100][[1]]
  • PARI
    log(gamma(1/24))

A256616 Decimal expansion of log(Gamma(1/48)).

Original entry on oeis.org

3, 8, 5, 9, 5, 2, 9, 0, 8, 5, 1, 6, 8, 5, 2, 8, 6, 7, 8, 7, 7, 2, 6, 6, 9, 4, 9, 3, 1, 7, 3, 1, 2, 5, 0, 3, 8, 0, 5, 8, 7, 0, 1, 5, 2, 7, 3, 1, 6, 4, 9, 9, 4, 3, 8, 9, 1, 6, 3, 4, 3, 8, 3, 2, 4, 5, 8, 3, 9, 5, 9, 1, 9, 2, 5, 4, 4, 9, 4, 9, 0, 5, 9, 2, 0, 5, 4, 4, 3, 2, 4, 6, 8, 3, 6, 4, 5, 9, 7, 6, 6, 4, 0, 7, 4
Offset: 1

Views

Author

Keywords

Examples

			3.859529085168528678772669493173125038058701527316499...
		

Crossrefs

Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256165 (k=3), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24).

Programs

  • Maple
    evalf(log(GAMMA(1/48)),100);
  • Mathematica
    RealDigits[Log[Gamma[1/48]],10,100][[1]]
  • PARI
    log(gamma(1/48))

A257958 Decimal expansion of the Digamma function at 1/Pi, negated.

Original entry on oeis.org

3, 2, 9, 0, 2, 1, 3, 9, 6, 0, 1, 7, 3, 2, 2, 4, 0, 9, 0, 8, 4, 3, 0, 9, 0, 8, 4, 5, 5, 4, 0, 0, 1, 9, 0, 3, 7, 4, 0, 2, 1, 9, 3, 2, 8, 2, 0, 0, 7, 0, 1, 6, 1, 2, 9, 3, 8, 8, 9, 5, 3, 1, 8, 3, 7, 5, 5, 3, 7, 5, 6, 6, 5, 3, 3, 7, 1, 7, 9, 1, 2, 9, 1, 5, 3, 2, 8, 7, 7, 1, 1, 1, 6, 9, 3, 5, 6, 7, 3, 1, 6, 6, 9
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for Psi(1/Pi) = -log(Pi) - Pi/2 - 1/2 - 1/8 - 1/72 + 1/64 +7/400 + 7/576 + 643/94080 + 103/30720 + ...

Examples

			-3.2902139601732240908430908455400190374021932820070161...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(1/Pi), 120);
  • Mathematica
    RealDigits[PolyGamma[1/Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(1/Pi)

Formula

Int_0^infinity x*dx/[(x^2+1)(exp(2x)-1)] = -Pi/2-Psi(1/Pi) = -1.5707...+ 3.2902.. = 1.71941... - R. J. Mathar, Aug 14 2023

A257959 Decimal expansion of the Digamma function at 1/2 + 1/Pi, negated.

Original entry on oeis.org

9, 2, 3, 6, 3, 2, 6, 7, 5, 9, 6, 1, 3, 3, 7, 7, 3, 4, 6, 0, 0, 0, 2, 6, 3, 3, 4, 7, 4, 8, 6, 7, 4, 7, 1, 3, 9, 8, 9, 4, 8, 9, 3, 2, 1, 5, 2, 6, 1, 0, 2, 7, 5, 3, 8, 5, 3, 5, 3, 9, 9, 3, 1, 5, 7, 2, 2, 0, 1, 3, 8, 9, 5, 4, 1, 0, 3, 9, 8, 8, 6, 7, 3, 3, 8, 7, 7, 1, 3, 7, 8, 2, 8, 0, 9, 1, 7, 3, 1, 0, 8, 9, 4
Offset: 0

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for Psi(1/2 + 1/Pi) = -log(Pi) + 1/4 + 1/16 - 5/576 - 13/512 - 569/25600 -539/36864 - 98671/12042240 - 16231/3932160 - ...

Examples

			-0.9236326759613377346000263347486747139894893215261027...
		

Crossrefs

Programs

  • Maple
    evalf(Psi(1/2+1/Pi), 120);
  • Mathematica
    RealDigits[PolyGamma[1/2+1/Pi], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(1/2+1/Pi)

A257957 Decimal expansion of log(Gamma(1/Pi)).

Original entry on oeis.org

1, 0, 3, 3, 6, 4, 6, 1, 2, 5, 7, 6, 5, 5, 8, 2, 7, 0, 6, 4, 8, 5, 5, 3, 7, 4, 5, 5, 3, 3, 1, 6, 1, 7, 8, 6, 6, 7, 1, 0, 0, 3, 0, 8, 7, 0, 1, 5, 9, 5, 9, 8, 8, 6, 0, 4, 4, 8, 2, 1, 8, 5, 7, 5, 2, 9, 5, 1, 1, 3, 1, 2, 7, 1, 4, 7, 9, 4, 5, 4, 4, 8, 1, 4, 7, 9, 6, 9, 8, 4, 1, 8, 5, 8, 0, 5, 3, 8, 5, 5, 1, 6, 8
Offset: 1

Views

Author

Keywords

Comments

The reference gives an interesting series representation with rational coefficients for log(Gamma(1/Pi)) = (1-1/Pi)*log(Pi) - 1/Pi + log(2)/2 + (1 + 1/4 + 1/12 + 1/32 + 1/75 + 1/144 + 13/2880 + 157/46080 + ...)/(2*Pi).
The value log(Gamma(1/Pi)) is also intimately related to integral_{x=0..1} arctan(arctanh(x))/x (A257963).

Examples

			1.0336461257655827064855374553316178667100308701595988...
		

Crossrefs

Programs

  • Maple
    evalf(log(GAMMA(1/Pi)), 120);
  • Mathematica
    RealDigits[Log[Gamma[1/Pi]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); log(gamma(1/Pi))

A257963 Decimal expansion of the Integral_{x=0..1} arctan(arctanh(x))/x.

Original entry on oeis.org

1, 0, 2, 5, 7, 6, 0, 5, 1, 0, 9, 3, 1, 3, 3, 0, 4, 5, 0, 3, 9, 8, 5, 4, 8, 6, 6, 0, 9, 6, 9, 5, 5, 2, 7, 9, 5, 3, 3, 4, 8, 7, 1, 8, 5, 6, 2, 1, 5, 0, 6, 9, 3, 9, 4, 2, 2, 3, 3, 8, 6, 8, 4, 4, 0, 1, 5, 8, 5, 1, 9, 2, 0, 8, 9, 9, 0, 7, 0, 9, 4, 2, 2, 2, 6, 7, 8, 7, 8, 7, 9, 1, 9, 7, 7, 9, 5, 3, 0, 7, 1, 3, 2, 9, 6
Offset: 1

Views

Author

Robert G. Wilson v, May 14 2015

Keywords

Comments

"The arctangent of the hyperbolic arctangent is analytic in the whole disk |x| < 1, and therefore, can be expanded into the MacLaurin series", see the first reference.

Examples

			= 1.02576051093133045039854866096955279533487185621506939422338684401585192089...
		

Crossrefs

Programs

  • Maple
    evalf(Pi*(log(GAMMA(1/Pi)) - log(GAMMA(1/2 + 1/Pi)) - log(Pi)/2),120); # Vaclav Kotesovec, May 17 2015
  • Mathematica
    nn = 111; RealDigits[ NIntegrate[ ArcTan[ ArcTanh[ x]]/x, {x, 0, 1}, AccuracyGoal -> nn, WorkingPrecision -> nn], 10, nn][[1]] (* or *)
    RealDigits[Pi (Log[Gamma[1/Pi]] - Log[Gamma[1/2 + 1/Pi]] - Log[Pi]/2), 10, 111][[1]] (* Robert G. Wilson v, May 14 2015 *)

Formula

The integral is equivalent to Pi*(log(Gamma(1/Pi)) - log(Gamma(1/2 + 1/Pi)) - log(Pi)/2), see page 82 of the second reference.

A380908 Decimal expansion of lim_{s->1} (zeta(s) - Pi^(s/2)/((s-1)*Gamma(s/2))) (negated).

Original entry on oeis.org

9, 7, 6, 9, 0, 4, 2, 9, 1, 0, 3, 3, 8, 7, 8, 9, 6, 6, 1, 8, 5, 6, 8, 9, 7, 5, 2, 0, 9, 3, 5, 0, 4, 7, 0, 8, 3, 7, 8, 0, 6, 7, 8, 7, 2, 8, 4, 7, 9, 4, 9, 2, 4, 0, 4, 7, 4, 6, 0, 7, 9, 2, 7, 7, 8, 7, 0, 2, 8, 6, 4, 3, 5, 2, 3, 2, 7, 5, 4, 2, 0, 0, 2, 9, 2, 0, 1, 4, 3, 0, 4, 8, 8, 2, 9
Offset: 0

Views

Author

Peter Luschny, Mar 04 2025

Keywords

Comments

This limit is Mathlib's definition of the 'completed Riemann zeta function' at s = 1. Mathematically zeta(1) is undefined; for the 'completed zeta function' the above limit value is assigned by construction (see Loeffler&Stoll). Such a value is also called a 'junk value' in several proof systems.

Examples

			-0.976904291033878966185689752093504708378...
		

Crossrefs

Programs

  • Maple
    c := -(gamma - log(4*Pi))/2: evalf(c, 110)*10^95: ListTools:-Reverse(convert(floor(%), base, 10));
  • Mathematica
    First[RealDigits[(EulerGamma - Log[4*Pi])/2, 10, 100]] (* Paolo Xausa, Mar 05 2025 *)
  • PARI
    (Euler-log(4*Pi))/2 \\ Charles R Greathouse IV, Sep 03 2025

Formula

Equals (gamma - log(4*Pi))/2.
Equals gamma + Psi(1/2)/2 - log(Pi^(1/2)) = A001620 - A114864 - A155968.
Previous Showing 11-17 of 17 results.