A301511
Expansion of e.g.f. exp(Sum_{k>=1} psi(k)*x^k/k!), where psi() is the Dedekind psi function (A001615).
Original entry on oeis.org
1, 1, 4, 14, 68, 362, 2224, 14940, 110348, 878600, 7518002, 68529122, 662709832, 6764329158, 72622813172, 817239648500, 9612724174088, 117878757097178, 1503660164683864, 19911519090176808, 273221610513382028, 3878513600608651636, 56873187579428449852, 860296560100458300892
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 14*x^3/3! + 68*x^4/4! + 362*x^5/5! + 2224*x^6/6! + 14940*x^7/7! + ...
-
psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; a[n_] := a[n] = SeriesCoefficient[Exp[Sum[psi[k] x^k/k!, {k, 1, n}]], {x, 0, n}]; Table[a[n] n!, {n, 0, 23}]
psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; a[n_] := a[n] = Sum[psi[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
A306483
Expansion of Product_{k>=1} 1/(1 - psi(k)*x^k), where psi() is the Dedekind psi function (A001615).
Original entry on oeis.org
1, 1, 4, 8, 23, 41, 114, 200, 491, 909, 2036, 3710, 8235, 14743, 31058, 56538, 115435, 207401, 417876, 745578, 1470371, 2626489, 5086108, 9030162, 17347019, 30620651, 58060380, 102426652, 192288399, 337633825, 629845430, 1101958752, 2040109199, 3563507377, 6553539316, 11412799294
Offset: 0
-
nmax = 35; CoefficientList[Series[Product[1/(1 - DirichletConvolve[i, MoebiusMu[i]^2, i, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 35; CoefficientList[Series[Exp[Sum[Sum[DirichletConvolve[i, MoebiusMu[i]^2, i, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DirichletConvolve[i, MoebiusMu[i]^2, i, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]
A381709
Euler transform of n^3 * A065960(n).
Original entry on oeis.org
1, 1, 137, 2351, 29075, 408429, 5957562, 76590384, 955079422, 11831378688, 142650905559, 1668991927795, 19144774189917, 215790313316371, 2388025355854986, 25973791505651972, 278176027053878678, 2936495245822593766, 30573379794788083289, 314185573464039742503
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 4)*x^k/k)))
A307073
Expansion of 1/(1 - Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2).
Original entry on oeis.org
1, 1, 4, 11, 33, 94, 279, 803, 2348, 6823, 19879, 57834, 168405, 490125, 1426824, 4153197, 12089787, 35191868, 102440785, 298194567, 868017488, 2526715121, 7355031727, 21409798576, 62321907805, 181413177769, 528076639862, 1537181201003, 4474589318797, 13025106833162, 37914855831345
Offset: 0
-
nmax = 30; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k/(1 - x^k)^2, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]
Comments