A383058 Decimal expansion of the asymptotic mean of A365498(k)/A034444(k), the ratio between the number of cubefree unitary divisors and the number of unitary divisors over the positive integers.
9, 1, 4, 2, 9, 4, 4, 1, 1, 8, 0, 1, 9, 8, 0, 6, 2, 4, 4, 8, 2, 9, 6, 1, 7, 6, 4, 5, 2, 1, 5, 6, 7, 1, 8, 4, 3, 7, 8, 5, 4, 6, 6, 9, 1, 7, 8, 1, 9, 3, 6, 8, 6, 6, 5, 9, 1, 9, 9, 7, 9, 7, 6, 7, 0, 0, 8, 5, 3, 4, 3, 8, 8, 3, 2, 0, 5, 6, 7, 6, 0, 8, 0, 0, 7, 1, 0, 7, 6, 7, 3, 6, 5, 0, 0, 4, 2, 6, 2, 6, 0, 5, 8, 2, 4
Offset: 0
Examples
0.91429441180198062448296176452156718437854669178193...
Programs
-
Mathematica
$MaxExtraPrecision = 300; m = 300; f[p_] := 1 - 1/(2*p^3); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n]), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
-
PARI
prodeulerrat(1 - 1/(2*p^3))
Formula
Equals Product_{p prime} (1 - 1/(2*p^3)).
In general, the asymptotic mean of the ratio between the number of k-free unitary divisors and the number of unitary divisors over the positive integers, for k >= 2, is Product_{p prime} (1 - 1/(2*p^k)).
Comments