cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A383058 Decimal expansion of the asymptotic mean of A365498(k)/A034444(k), the ratio between the number of cubefree unitary divisors and the number of unitary divisors over the positive integers.

Original entry on oeis.org

9, 1, 4, 2, 9, 4, 4, 1, 1, 8, 0, 1, 9, 8, 0, 6, 2, 4, 4, 8, 2, 9, 6, 1, 7, 6, 4, 5, 2, 1, 5, 6, 7, 1, 8, 4, 3, 7, 8, 5, 4, 6, 6, 9, 1, 7, 8, 1, 9, 3, 6, 8, 6, 6, 5, 9, 1, 9, 9, 7, 9, 7, 6, 7, 0, 0, 8, 5, 3, 4, 3, 8, 8, 3, 2, 0, 5, 6, 7, 6, 0, 8, 0, 0, 7, 1, 0, 7, 6, 7, 3, 6, 5, 0, 0, 4, 2, 6, 2, 6, 0, 5, 8, 2, 4
Offset: 0

Views

Author

Amiram Eldar, Apr 15 2025

Keywords

Comments

The asymptotic mean of the inverse ratio A034444(k)/A365498(k) is zeta(3)/zeta(6) (A157289).
In general, the asymptotic mean of the inverse ratio, between the number of unitary divisors and the number of k-free (i.e., not divisible by a k-th power other than 1) unitary divisors over the positive integers, for k >= 2, is zeta(k)/zeta(2*k).

Examples

			0.91429441180198062448296176452156718437854669178193...
		

Crossrefs

The unitary analog of A361062.

Programs

  • Mathematica
    $MaxExtraPrecision = 300; m = 300; f[p_] := 1 - 1/(2*p^3); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n]), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    prodeulerrat(1 - 1/(2*p^3))

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A365498(k)/A034444(k).
Equals Product_{p prime} (1 - 1/(2*p^3)).
In general, the asymptotic mean of the ratio between the number of k-free unitary divisors and the number of unitary divisors over the positive integers, for k >= 2, is Product_{p prime} (1 - 1/(2*p^k)).

A157293 Decimal expansion of zeta(3)/zeta(9).

Original entry on oeis.org

1, 1, 9, 9, 6, 4, 7, 5, 3, 9, 6, 4, 7, 1, 3, 9, 7, 9, 0, 9, 4, 8, 0, 7, 8, 3, 0, 4, 8, 1, 0, 4, 0, 2, 3, 3, 0, 9, 9, 9, 8, 6, 5, 8, 5, 0, 2, 6, 2, 4, 3, 0, 8, 5, 3, 4, 7, 6, 0, 2, 7, 8, 1, 5, 5, 2, 4, 1, 9, 8, 3, 8, 0, 7, 7, 0, 9, 8, 1, 0, 0, 3, 6, 8, 4, 2, 0, 2, 4, 5, 8, 0, 1, 0, 9, 7, 8, 4, 7, 3, 1, 2, 3, 8, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The product Product_{p = primes = A000040} (1+1/p^3+1/p^6). The product over (1+2/p^3+1/p^6) equals A157289^2.

Examples

			1.19964753964713... = (1+1/2^3+1/2^6)*(1+1/3^3+1/3^6)*(1+1/5^3+1/5^6)*(1+1/7^3+1/7^6)*...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(3)/Zeta(9)) ;
  • Mathematica
    RealDigits[Zeta[3]/Zeta[9], 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)

Formula

Equals A002117/A013667 = Product_{i>=1} (1+1/A030078(i)+1/A030516(i)) .

A358336 Multiplicative sequence with a(p^e) = ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1) for prime p and e > 0.

Original entry on oeis.org

1, 3, 5, 12, 9, 15, 13, 40, 30, 27, 21, 60, 25, 39, 45, 120, 33, 90, 37, 108, 65, 63, 45, 200, 90, 75, 153, 156, 57, 135, 61, 336, 105, 99, 117, 360, 73, 111, 125, 360, 81, 195, 85, 252, 270, 135, 93, 600, 182, 270, 165, 300, 105, 459, 189, 520, 185, 171, 117, 540, 121, 183, 390, 896
Offset: 1

Views

Author

Werner Schulte, Nov 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p - 1)*(1 + e*(e + 1)/2) + e)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2022 *)
  • PARI
    a(n) = { my (f=factor(n), p, e, v=1); for (k=1, #f~, p=f[k,1]; e=f[k,2]; v *= ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1)); return (v) } \\ Rémy Sigrist, Jan 18 2023

Formula

a(n) = Sum_{k=1..n} gcd(k, n) * A005361(gcd(k, n)) for n > 0.
Equals Dirichlet convolution of A000010 and n * A005361.
Dirichlet g.f.: (zeta(s-1)^2 * zeta(2*s-2) * zeta(3*s-3)) / (zeta(s) * zeta(6*s-6)).
Equals Dirichlet convolution of A018804 and A112526.
Sum_{k=1..n} a(k) ~ (zeta(3)/(2*zeta(6))) * n^2 * (log(n) + 2*gamma - 1/2 + zeta'(2)/zeta(2) + 3*zeta'(3)/zeta(3) + 6*zeta'(6)/zeta(6)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 13 2024

A373702 Decimal expansion of (2 - zeta(2))*zeta(2)*zeta(3)/zeta(6).

Original entry on oeis.org

6, 9, 0, 1, 0, 4, 8, 8, 2, 5, 1, 0, 2, 2, 4, 9, 7, 8, 1, 8, 7, 7, 3, 0, 0, 2, 5, 6, 7, 8, 2, 7, 5, 3, 2, 6, 4, 4, 0, 6, 6, 6, 2, 3, 1, 3, 1, 3, 3, 4, 8, 1, 2, 5, 4, 9, 1, 2, 2, 2, 9, 4, 2, 6, 0, 2, 0, 9, 9, 0, 1, 7, 1, 6, 8, 7, 3, 3, 7, 4, 6, 7, 2, 7, 9, 2, 6, 7, 8, 9, 1, 5, 0, 4, 0, 0, 5, 2, 5, 2
Offset: 0

Views

Author

Stefano Spezia, Jun 13 2024

Keywords

Examples

			0.69010488251022497818773002567827532644066623131...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2-Zeta[2])Zeta[2]Zeta[3]/Zeta[6],10,100][[1]]
Previous Showing 11-14 of 14 results.