A207397
G.f.: Sum_{n>=0} Product_{k=1..n} (q^k - 1) where q = (1+x)/(1+x^2).
Original entry on oeis.org
1, 1, 1, 2, 11, 74, 557, 4799, 47004, 516717, 6302993, 84502346, 1235198136, 19552296646, 333212892221, 6083009119262, 118433569748072, 2449663066933397, 53643715882853914, 1239875630317731463, 30163779836127304106, 770476745704778418686
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 11*x^4 + 74*x^5 + 557*x^6 + 4799*x^7 +...
Let q = (1+x)/(1+x^2), then
A(x) = 1 + (q-1) + (q-1)*(q^2-1) + (q-1)*(q^2-1)*(q^3-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1)*(q^5-1) +...
which also is proposed to equal:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
-
{a(n)=local(A=1+x,q=(1+x)/(1+x^2 +x*O(x^n))); A=sum(m=0,n,prod(k=1,m,(q^k-1)));polcoeff(A,n)}
-
{a(n)=local(A=1+x,q=(1+x)/(1+x^2 +x*O(x^n))); A=sum(m=0,n,q^(-m^2)*prod(k=1,m,(q^(2*k-1)-1)));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A207433
G.f.: Sum_{n>=0} Product_{k=1..n} (q^k - 1) where q = (1-x^3)/(1-x).
Original entry on oeis.org
1, 1, 3, 11, 56, 350, 2609, 22582, 222625, 2462969, 30219676, 407276420, 5981197376, 95073427910, 1626294895274, 29788176027819, 581704672430937, 12064521684969823, 264843222932272690, 6135057298705027024, 149559103545555671423, 3827360866024134614644
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 56*x^4 + 350*x^5 + 2609*x^6 +...
Let q = (1-x^3)/(1-x) = 1 + x + x^2, then
A(x) = 1 + (q-1) + (q-1)*(q^2-1) + (q-1)*(q^2-1)*(q^3-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1)*(q^5-1) +...
Also, we have the identity:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
From _Peter Bala_, Nov 05 2017: (Start)
a(3) = 11: The eleven row Fishburn matrices of size 3 with entries in {0,1,2} are
/1 0\ /2 0\ /0 1\ /0 2\ /1 1\
\0 2/ \0 1/ \0 2/ \0 1/ \0 1/
and
/1 0 0\ /0 1 0\ /0 0 1\ /1 0 0\ /0 1 0\ /0 0 1\
|0 1 0| |0 1 0| |0 0 1| |0 0 1| |0 0 1| |0 0 1|.
\0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/
(End)
-
{a(n)=local(A=1+x,q=(1+x+x^2 +x*O(x^n))); A=sum(m=0,n,prod(k=1,m,(q^k-1)));polcoeff(A,n)}
-
{a(n)=local(A=1+x,q=(1+x+x^2 +x*O(x^n))); A=sum(m=0,n,q^(-m^2)*prod(k=1,m,(q^(2*k-1)-1)));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A186737
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=1..n} ((1 + x*A(x))^k - 1).
Original entry on oeis.org
1, 1, 3, 14, 82, 563, 4390, 38273, 370090, 3951524, 46436236, 598606795, 8431113021, 129134793211, 2139840753676, 38161937079832, 728817179712481, 14837170081079164, 320656534559643735, 7329984468062242588, 176662137501934534082, 4476371962949911027001, 118946746110478235868525
Offset: 0
G.f.: A(X) = 1 + x + 3*x^2 + 14*x^3 + 82*x^4 + 563*x^5 + 4390*x^6 +...
where
A(x) = 1 + ((1+x*A(x))-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1)*((1+x*A(x))^3-1) + ((1+x*A(x))-1)*((1+x*A(x))^2-1)*((1+x*A(x))^3-1)*((1+x*A(x))^4-1) +...
Let q = 1+x*A(x), then:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
-
nmax = 22; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Sum[Product[ ((1 + x A[x])^k - 1), {k, 1, j}], {j, 0, n}] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,prod(k=1,m,(1+x*A+x*O(x^n))^k - 1)));polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=local(A=1+x, q); for(i=1,n,q=(1+x*A +x*O(x^n)); A=sum(m=0, n, q^(-m^2)*prod(k=1, m, (q^(2*k-1)-1)))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
A207214
E.g.f.: Sum_{n>=0} exp(n*x) * Product_{k=1..n} (exp(k*x) - 1).
Original entry on oeis.org
1, 1, 7, 85, 1759, 55621, 2501407, 151984645, 12004046719, 1196068161541, 146792747463007, 21762540250822405, 3834791755438306879, 792270319634586707461, 189687840256042278859807, 52103089179906338874671365, 16275196750916467736633834239
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 85*x^3/3! + 1759*x^4/4! + 55621*x^5/5! +...
such that, by definition,
A(x) = 1 + exp(x) * (exp(x)-1) + exp(2*x) * (exp(x)-1)*(exp(2*x)-1)
+ exp(3*x) * (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)
+ exp(4*x) * (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)*(exp(4*x)-1) +...
The related e.g.f. of A158690 equals the series:
G(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(2*x)-1)
+ (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)
+ (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)*(exp(4*x)-1) +...
or, more explicitly,
G(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 1073*x^4/4! + 32671*x^5/5! +...
such that G(x) satisfies:
G(x) = (1 + exp(x)*A(x))/2.
-
{a(n)=n!*polcoeff(sum(m=0,n+1,exp(m*x+x*O(x^n))*prod(k=1,m,exp(k*x+x*O(x^n))-1)),n)}
for(n=0,20,print1(a(n),", "))
A209832
Expansion of the q-series Sum_{n>=0} (-1)^n*q^(n+1)*Product_{k = 1..n} (1 - q^(2*k-1)), q = exp(t), as a formal Taylor series in t.
Original entry on oeis.org
1, 2, 12, 200, 6576, 353312, 28032192, 3077502080, 446470392576, 82695752049152, 19038594625539072, 5332477132779407360, 1785375992372231909376, 704147423230177089953792, 323094378183013059349757952, 170643791820813252598723543040
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[(-1)^n*Exp[x*(n + 1)] * Product[ (1 - Exp[(2*k - 1)*x]), {k, 1, n}], {n, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 09 2023 *)
Comments