cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 87 results. Next

A161644 Number of ON states after n generations of cellular automaton based on triangles.

Original entry on oeis.org

0, 1, 4, 10, 16, 22, 34, 52, 64, 70, 82, 106, 136, 160, 190, 232, 256, 262, 274, 298, 328, 358, 400, 466, 532, 568, 598, 658, 742, 814, 892, 988, 1036, 1042, 1054, 1078, 1108, 1138, 1180, 1246, 1312, 1354, 1396, 1474, 1588, 1702, 1816, 1966, 2104, 2164, 2194
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 15 2009

Keywords

Comments

Analog of A151723 and A151725, but here we are working on the hexagonal net where each triangular cell has three neighbors (meeting along its edges). A cell is turned ON if exactly one of its three neighbors is ON. An ON cell remains ON forever.
We start with a single ON cell.
There is a dual version where the triangular cells meet vertex-to-vertex. The counts are the same: the two versions are isomorphic. Reed (1974) uses the vertex-to-vertex version. See the two Sloane "Illustration" links below to compare the two versions.
It appears that a(n) is also the number of polytoothpicks added in a toothpick structure formed by V-toothpicks but starting with a Y-toothpick: a(n) = a(n-1)+(A182632(n)-A182632(n-1))/2. (Checked up to n=39.) - Omar E. Pol, Dec 07 2010 and R. J. Mathar, Dec 17 2010
It appears that the behavior is similar to A161206. - Omar E. Pol, Jan 15 2016
It would be nice to have a formula or recurrence.
If new triangles are required to always move outwards we get A295559 and A295560.
From Paul Cousin, May 23 2025: (Start)
This is ETA rule 242 (11110010 in binary):
-----------------------------------------------
|state of the cell |1|1|1|1|0|0|0|0|
|sum of the neighbors' states |3|2|1|0|3|2|1|0|
|cell's next state |1|1|1|1|0|0|1|0|
----------------------------------------------- (End)

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Describes the dual structure where new triangles are joined at vertices rather than edges.]
  • S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962. See Example 3.

Crossrefs

Programs

  • PARI
    \\ See Links section.

Formula

a(n) = (A182632(n) - 1)/2, n >= 1. - Omar E. Pol, Mar 07 2013

Extensions

Edited by N. J. A. Sloane, Jan 10 2010 and Nov 27 2017

A182632 Toothpick sequence on the hexagonal net starting from a node.

Original entry on oeis.org

0, 3, 9, 21, 33, 45, 69, 105, 129, 141, 165, 213, 273, 321, 381, 465, 513, 525, 549, 597, 657, 717, 801, 933, 1065, 1137, 1197, 1317, 1485, 1629, 1785, 1977, 2073, 2085, 2109, 2157, 2217, 2277, 2361, 2493, 2625, 2709, 2793, 2949, 3177, 3405, 3633
Offset: 0

Views

Author

Omar E. Pol, Dec 07 2010

Keywords

Comments

A connected network of toothpicks is constructed by the following iterative procedure. At stage 1, place three toothpicks each of length 1 on a hexagonal net, as a propeller, joined at a node. At each subsequent stage, add two toothpicks (which could be called a single V-toothpick with a 120-degree corner) adjacent to each node which is the endpoint of a single toothpick.
The exposed endpoints of the toothpicks of the old generation are touched by the endpoints of the toothpicks of the new generation. In the graph, the edges of the hexagons become edges of the graph, and the graph grows such that the nodes that were 1-connected in the old generation are 3-connected in the new generation.
It turns out heuristically that this growth does not show frustration, i.e., a free edge is never claimed by two adjacent exposed endpoints at the same stage; the rule of growing the network does apparently not need specifications to address such cases.
The sequence gives the number of toothpicks in the toothpick structure after n-th stage. A182633 (the first differences) gives the number of toothpicks added at n-th stage.
a(n) is also the number of components after n-th stage in a toothpick structure starting with a single Y-toothpick in stage 1 and adding only V-toothpicks in stages >= 2. For example: consider that in A161644 a V-toothpick is also a polytoothpick with two components or toothpicks and a Y-toothpick is also a polytoothpick with three components or toothpicks. For more information about this comment see A161206, A160120 and A161644.
Has a behavior similar to A151723, A182840. - Omar E. Pol, Mar 07 2013
From Omar E. Pol, Feb 17 2023: (Start)
Assume that every triangular cell has area 1.
It appears that the structure contains only three types of polygons:
- Regular hexagons of area 6.
- Concave decagons (or concave 10-gons) of area 12.
- Concave dodecagons (or concave 12-gons) of area 18.
There are infinitely many of these polygons.
The structure contains concentric hexagonal rings formed by hexagons and also contains concentric hexagonal rings formed by alternating decagons and dodecagons.
The structure has internal growth.
For an animation see the movie version in the Links section.
The animation shows the fractal-like behavior the same as in other members of the family of toothpick cellular automata.
For another version starting with a simple toothpick see A182840.
For a version of the structure in the first quadrant but on the square grid see A182838. (End)

Examples

			a(0)=0. At stage 1 we place 3 toothpicks connected to the initial grid point of the structure. Note that there are 3 exposed endpoints. At stage 2 we place 6 toothpicks, so a(2)=3+6=9, etc.
		

Crossrefs

Formula

a(n) = 3*A182634(n).
a(n) = 1 + 2*A161644(n), n >= 1. - Omar E. Pol, Mar 07 2013

A160170 X-toothpick sequence on Z^3 lattice (see Comments for precise definition).

Original entry on oeis.org

0, 1, 5, 13, 21, 45, 77, 109, 165, 245, 325, 413, 525, 685, 853, 1093, 1317, 1661, 1981, 2301, 2645, 3093, 3621, 4157, 4861, 5565, 6437, 7173, 8053, 8893, 9917, 11005, 12261, 13589, 14981, 16397, 17837, 19341, 20997
Offset: 0

Views

Author

Omar E. Pol, May 03 2009

Keywords

Comments

Here a "X-toothpick" is defined to be a cross with 4 endpoints and a midpoint. Also, a X-toothpick can be represented by set of four connected toothpicks forming a cross.
We start at stage 0 on the Z^3 lattice with no X-toothpicks.
At stage 1 place a X-toothpick.
Rule: each exposed endpoint of the X-toothpicks of the old generation must be touched by the midpoint of a X-toothpick of new generation (see illustrations).
The sequence gives the number of X-toothpicks in the three-dimensional structure after n-th stage. A170171 (the first differences) gives the number of X-toothpicks added at n-th stage.
For a similar sequence but starting with a single toothpick see A170876.
For the X-toothpick sequence on Z^2 lattice see A147562, the Ulam-Warburton cellular automaton.
For more information about the growth of toothpicks see A139250.

Crossrefs

Cf. A147562. - Omar E. Pol, Mar 28 2011

Extensions

C++ program, illustrations and more terms (a(6)-a(38)) based on Email from R. J. Mathar dated Jan 10 2010.

A160161 First differences of the 3D toothpick numbers A160160.

Original entry on oeis.org

0, 1, 2, 4, 8, 8, 8, 8, 16, 32, 56, 32, 16, 8, 16, 32, 56, 56, 64, 80, 152, 232, 352, 144, 48, 32, 24, 40, 56, 56, 64, 80, 152, 232, 352, 216, 168, 176, 272, 360, 496, 448, 536, 664, 1168, 1488, 2000, 768, 304, 336, 264, 192, 112, 120, 128, 112, 168, 240, 352, 216, 168, 176, 272, 360, 496
Offset: 0

Views

Author

Omar E. Pol, May 03 2009

Keywords

Comments

Number of toothpicks added at n-th stage to the three-dimensional toothpick structure of A160160.
The sequence should start with a(1) = 1 = A160160(1) - A160160(0), the initial a(0) = 0 seems purely conventional and not given in terms of A160160. The sequence can be written as a table with rows r >= 0 of length 1, 1, 1, 3, 9, 18, 36, ... = 9*2^(r-4) for row r >= 4. In that case, rows 0..3 are filled with 2^r, and all rows r >= 3 have the form (x_r, y_r, x_r) where x_r and y_r have 3*2^(r-4) elements, all multiples of 8. Moreover, y_r[1] = a(A033484(r-2)) = x_{r+1}[1] = a(A176449(r-3)) is the largest element of row r and thus a record value of the sequence. - M. F. Hasler, Dec 11 2018

Examples

			Array begins:
===================
    x     y     z
===================
          0     1
    2     4     8
    8     8     8
   16    32    56
   32    16     8
   16    32    56
   56    64    80
  152   232   352
  144    48    32
...
From _Omar E. Pol_, Feb 28 2018: (Start)
Also, starting with 1, the sequence can be written as an irregular triangle in which the row lengths are the terms of A011782 multiplied by 3, as shown below:
   1,  2,  4;
   8,  8,  8;
   8, 16, 32, 56, 32, 16;
   8, 16, 32, 56, 56, 64, 80, 152, 232, 352, 144, 48;
  32, 24, 40, 56, 56, 64, 80, 152, 232, 352, 216, 168, 176, 272, 360, 496, 448, ...
(End)
If one starts rows with a(A176449(k) = 9*2^k-2), they are of the form A_k, B_k, A_k where A_k and B_k have 3*2^k elements and the first element of A_k is the first element of B_{k-1} and the largest of that (previous) row:
   k | a(9*2^k-2, ...) = A_k ; B_k ; A_k
  ---+-------------------------------------
     | a( 1 .. 6) = (1, 2, 4, 8, 8, 8)   (One might consider a row (8 ; 8 ; 8).)
   0 | a( 7, ...) = (8, 16, 32 ; 56, 32, 16 ; 8, 16, 32)
   1 | a(16, ...) = (56, 56, 64, 80, 152, 232 ; 352, 144, 48, 32, 24, 40 ;
     |               56, 56, 64, 80, 152, 232)
   2 | a(34, ...) = (352, 216, 168, 176, 272, 360, 496, 448, 536, 664, 1168, 1488 ;
     |               2000, 768, 304, 336, 264, 192, 112, 120, 128, 112, 168, 240 ;
     |               352, 216, 168, 176, 272, 360, 496, 448, 536, 664, 1168, 1488)
   3 | a(70, ...) = (2000, 984, ... ; 10576, 4304, ... ; 2000, 984, ...)
   4 | a(142, ...) = (10576, 5016, ... ; 54328, 24120, ...; 10576, 5016, ...)
  etc. - _M. F. Hasler_, Dec 11 2018
		

Crossrefs

Programs

  • PARI
    A160161_vec(n)=(n=A160160_vec(n))-concat(0,n[^-1]) \\ M. F. Hasler, Dec 11 2018
    
  • PARI
    A160161_vec(n)={local(E=[Vecsmall([1,1,1])], s(U)=[Vecsmall(Vec(V)+U)|V<-E], J=[], M, A, B, U); [if(i>4,8*#E=setminus(setunion(A=s(U=matid(3)[i%3+1,]), B=select(vecmin,s(-U))), J=setunion(setunion(setintersect(A, B), E), J)),2^(i-1))|i<-[1..n]]} \\ Returns the vector a(1..n). (A160160 is actually given as partial sums of this sequence, rather than the converse.) - M. F. Hasler, Dec 12 2018

Formula

a(9*2^k - m) = a(6*2^k - m) for all k >= 0 and 2 <= m <= 3*2^(k-1) + 2. - M. F. Hasler, Dec 12 2018

Extensions

Extended to 78 terms with C++ program by R. J. Mathar, Jan 09 2010
Edited and extended by M. F. Hasler, Dec 11 2018

A182633 Number of toothpicks added at n-th stage in the toothpick structure of A182632.

Original entry on oeis.org

0, 3, 6, 12, 12, 12, 24, 36, 24, 12, 24, 48, 60, 48, 60, 84, 48, 12, 24, 48, 60, 60, 84, 132, 132, 72, 60, 120, 168, 144, 156, 192, 96, 12, 24, 48, 60, 60, 84, 132, 132, 84, 84, 156, 228, 228, 228
Offset: 0

Views

Author

Omar E. Pol, Dec 07 2010

Keywords

Comments

First differences of A182632.
a(n) is also the number of components added at n-th stage in the toothpick structure formed by V-toothpicks with an initial Y-toothpick, since a V-toothpick has two components and a Y-toothpick has three components (For more information see A161206, A160120, A161644).

Examples

			From _Omar E. Pol_, Feb 08 2013 (Start):
When written as a triangle:
0;
3;
6;
12,12;
12,24,36,24;
12,24,48,60,48,60, 84, 48;
12,24,48,60,60,84,132,132,72,60,120,168,144,156,192,96;
12,24,48,60,60,84,132,132,84,84,156,228,228,228,...
...
It appears that positive terms of the right border are A007283.
(End)
		

Crossrefs

Formula

It appears that a(n) = 2*A161645(n) but with a(1)=3.
a(n) = 3*A182635(n). - Omar E. Pol, Feb 09 2013

A161645 First differences of A161644: number of new ON cells at generation n of the triangular cellular automaton described in A161644.

Original entry on oeis.org

0, 1, 3, 6, 6, 6, 12, 18, 12, 6, 12, 24, 30, 24, 30, 42, 24, 6, 12, 24, 30, 30, 42, 66, 66, 36, 30, 60, 84, 72, 78, 96, 48, 6, 12, 24, 30, 30, 42, 66, 66, 42, 42, 78, 114, 114, 114, 150, 138, 60, 30, 60, 84, 90, 114, 174, 198, 132, 90, 144, 210, 192, 192, 210, 96, 6, 12, 24
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 15 2009

Keywords

Comments

See the comments in A161644.
It appears that a(n) is also the number of V-toothpicks or Y-toothpicks added at the n-th stage in a toothpick structure on hexagonal net, starting with a single Y-toothpick in stage 1 and adding only V-toothpicks in stages >=2 (see A161206, A160120, A182633). - Omar E. Pol, Dec 07 2010

Examples

			From _Omar E. Pol_, Apr 08 2015: (Start)
The positive terms written as an irregular triangle in which the row lengths are the terms of A011782:
1;
3;
6,6;
6,12,18,12;
6,12,24,30,24,30,42,24;
6,12,24,30,30,42,66,66,36,30,60,84,72,78,96,48;
6,12,24,30,30,42,66,66,42,42,78,114,114,114,150,138,60,30,60,84,90,114,174,198,132,90,144,210,192,192,210,96;
...
It appears that the right border gives A003945.
(End)
		

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Describes the dual structure where new triangles are joined at vertices rather than edges.]

Crossrefs

A160420 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton whose skeleton is the same network as the toothpick structure of A139250 but with toothpicks of length 4.

Original entry on oeis.org

0, 5, 13, 27, 41, 57, 85, 123, 149, 165, 193, 233, 277, 337, 429, 527, 577, 593, 621, 661, 705, 765, 857, 957, 1025, 1085, 1181, 1305, 1453, 1665, 1945, 2187, 2285, 2301, 2329, 2369, 2413, 2473, 2565, 2665, 2733, 2793, 2889, 3013, 3161, 3373, 3653, 3897, 4013
Offset: 0

Views

Author

Omar E. Pol, May 13 2009, May 18 2009

Keywords

Comments

a(n) is also the number of grid points that are covered after n-th stage by an polyedge as the toothpick structure of A139250, but with toothpicks of length 4.

Examples

			a(2)=13:
.o-o-o-o-o
.....|....
.....o....
.....|....
.....o....
.....|....
.....o....
.....|....
.o-o-o-o-o
		

Crossrefs

Formula

Conjecture: a(n) = A147614(n)+2*A139250(n). [From R. J. Mathar, Jan 22 2010]
The above conjecture is true: each toothpick covers exactly two more grid points than the corresponding toothpick in A147614.

Extensions

Definition revised by N. J. A. Sloane, Jan 02 2010.
Formula verified and more terms from Nathaniel Johnston, Nov 13 2010

A323650 Flower garden sequence (see Comments for precise definition).

Original entry on oeis.org

0, 1, 3, 7, 15, 19, 27, 39, 63, 67, 75, 87, 111, 123, 147, 183, 255, 259, 267, 279, 303, 315, 339, 375, 447, 459, 483, 519, 591, 627, 699, 807, 1023, 1027, 1035, 1047, 1071, 1083, 1107, 1143, 1215, 1227, 1251, 1287, 1359, 1395, 1467, 1575, 1791, 1803, 1827, 1863, 1935, 1971, 2043, 2151, 2367, 2403, 2475
Offset: 0

Views

Author

Omar E. Pol, Jan 21 2019

Keywords

Comments

This arises from a hybrid cellular automaton on a triangular grid formed of I-toothpicks and V-toothpicks. Also, it appears that this is a missing link between A147562 (Ulam-Warburton) and three toothpick sequences: A139250 (normal toothpicks), A161206 (V-toothpicks) and A160120 (Y-toothpicks). The behavior resembles the toothpick sequence A139250, on the other hand, the formulas are directly related to A147562. Plot 2 shows that the graph is located between the graph of A139250 and the graph of A147562.
For the construction of the sequence the rules are as follows:
On the infinite triangular grid at stage 0 there are no toothpicks, so a(0) = 0.
At stage 1 we place an I-toothpick formed of two single toothpicks in vertical position, so a(1) = 1.
For the next n generation we have that:
If n is even then at every free end of the structure we add a V-toothpick formed of two single toothpicks such that the angle of each single toothpick with respect to the connected I-toothpick is 120 degrees.
If n is odd then we add I-toothpicks in vertical position (see the example).
a(n) gives the total number of I-toothpicks and V-toothpicks in the structure after the n-th stage.
A323651 (the first differences) gives the number of elements added at the n-th stage.
Note that 2*a(n) gives the total number of single toothpicks of length 1 after the n-th stage.
The structure contains only three kinds of polygonal regions as follows:
- Rhombuses that contain two triangular cells.
- Regular hexagons that contain six triangular cells.
- Oblong hexagons that contain 10 triangular cells.
The structure looks like a "garden of flowers with six petals" (between other substructures). In particular, after 2^(n+1) stages with n >= 0, the structure looks like a flower garden in a rectangular box which contains A002450(n) flowers with six petals.
Note that this hybrid cellular automaton is also a superstructure of the Ulam-Warburton cellular automaton (at least in four ways). The explanation is as follows:
1) A147562(n) equals the total number of I-toothpicks in the structure after 2*n - 1 stage, n >= 1.
2) A147562(n) equals the total number of pairs of Y-toothpicks connected by their endpoints in the structure after 2*n stage (see the example).
3) A147562(n) equals the total number of "flowers with six petals" (or six-pointed stars formed of six rhombuses) in the structure after 4*n stage. Note that the location of the "flowers with six petals" in the structure is essentially the same as the location of the "ON" cells in the version "one-step bishop" of A147562.
4) For more connections to A147562 see the Formula section.
The "word" of this cellular automaton is "ab". For more information about the word of cellular automata see A296612.
The total number of “flowers with six petals” after n-th stage equals the total number of “hidden crosses” after n-th stage in the toothpick structure of A139250, including the central cross (beginning to count the crosses when their “nuclei” are totally formed with 4 quadrilaterals). - Omar E. Pol, Mar 06 2019

Examples

			Illustration of initial terms:
.
                        |   |
                \ /     |\ /|
         |       |        |
         |       |        |
                / \     |/ \|
                        |   |
n        1       2        3
a(n)     1       3        7
.
Note that for n = 2 the structure is also the same as a pair of Y-toothpicks connected by their endpoints (see A160120).
		

Crossrefs

Cf. A002450, A103454, A139250 (normal toothpicks), A147562 (Ulam-Warburton), A147582, A160120 (Y-toothpicks), A161206 (V-toothpicks), A296612, A323641, A323642, A323649 (corner sequence), A323651 (first differences).
For other hybrid cellular automata, see A194270, A194700, A220500, A289840, A290220, A294020, A294962, A294980, A299770.

Programs

Formula

a(n) = 3*A147562(n/2) if n is even.
a(n) = 3*A147562((n-1)/2) + A147582(n) if n is odd.
a(n) = 3*A147562((n-1)/2) + A147562(n) - A147562(n-1) if n is odd.
a(2^n) = A103454(n), n >= 0.

A161830 Y-toothpick triangle (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 19, 27, 31, 35, 39, 47, 53, 61, 71, 89, 99, 103
Offset: 0

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

Y-toothpick sequence starting at the corner of an infinite hexagon in which its vertex touch an endpoint of the initial Y-toothpick and the two other endpoints are equidistant from the nearest sides of the hexagon.
The sequence gives the number of Y-toothpicks in the structure after n rounds. A161831 (the first differences) gives the number added at the n-th round.
See the Y-toothpick sequence A160120 for more information about the recursive, fractal-like structure.

Crossrefs

A160422 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton whose virtual skeleton is a polyedge as the toothpick structure of A139250 but with toothpicks of length 6.

Original entry on oeis.org

0, 7, 19, 41, 63, 87, 131, 193, 235, 259, 303, 367, 435, 527, 675, 837, 919, 943, 987, 1051, 1119, 1211, 1359, 1523, 1631, 1723, 1875, 2071, 2299, 2631, 3087, 3489, 3651, 3675, 3719, 3783, 3851, 3943, 4091, 4255, 4363, 4455, 4607, 4803, 5031, 5363, 5819, 6223, 6411
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

a(n) is also the number of grid points that are covered after n-th stage by an polyedge as the toothpick structure of A139250, but with toothpicks of length 6.

Crossrefs

Formula

a(n) = A147614(n)+4*A139250(n) = A160420(n)+2*A139250(n) since each toothpick covers exactly four more grid points than the corresponding toothpick in A147614.

Extensions

More terms and formula from Nathaniel Johnston, Nov 13 2010
Previous Showing 31-40 of 87 results. Next