cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A371067 E.g.f. satisfies A(x) = 1 + x*exp(x^2*A(x)^2).

Original entry on oeis.org

1, 1, 0, 6, 48, 180, 2880, 46200, 483840, 9087120, 203212800, 3752511840, 89413632000, 2510276408640, 66301996400640, 1982685238934400, 67064515854336000, 2274167610024710400, 82881756045036748800, 3301346557970183923200, 135363022243685203968000
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(2*k+1, n-2*k)/((2*k+1)*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(2*k+1,n-2*k)/( (2*k+1)*k! ).
a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * r^(n+1)), where r = 0.450347181930267755599214125867779338412791581819135528888185619948594... and s = 2.1478259175343697310213089706837271102656629945040966643073615920885... are roots of the system of equations exp(r^2*s^2)*r = s-1, 2*(s-1)*r^2*s = 1. - Vaclav Kotesovec, Mar 10 2024

A371068 E.g.f. satisfies A(x) = 1 + x*exp(x^3*A(x)^3).

Original entry on oeis.org

1, 1, 0, 0, 24, 360, 2160, 7560, 241920, 8164800, 145756800, 1736380800, 34488115200, 1416906691200, 46117316044800, 1085696644032000, 26627911620710400, 1054301997805056000, 46867776416068608000, 1726488804870679449600, 58404671366139850752000
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^k*binomial(3*k+1, n-3*k)/((3*k+1)*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k)^k * binomial(3*k+1,n-3*k)/( (3*k+1)*k! ).
Previous Showing 11-12 of 12 results.