cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A162466 a(n) = 12*a(n-2) for n > 2; a(1) = 1, a(2) = 8.

Original entry on oeis.org

1, 8, 12, 96, 144, 1152, 1728, 13824, 20736, 165888, 248832, 1990656, 2985984, 23887872, 35831808, 286654464, 429981696, 3439853568, 5159780352, 41278242816, 61917364224, 495338913792, 743008370688, 5944066965504
Offset: 1

Views

Author

Klaus Brockhaus, Jul 04 2009

Keywords

Comments

Eighth binomial transform is A161729.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,12},{1,8},30] (* Harvey P. Dale, Sep 17 2020 *)
  • PARI
    {m=24; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=12*v[n-2]); v}
    
  • PARI
    Vec(x*(1+8*x)/(1-12*x^2)+O(x^29)) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = (5-(-1)^n)*2^(1/2 *(2*n-3+(-1)^n))*3^(1/4*(2*n-5+(-1)^n)).
G.f.: x*(1+8*x)/(1-12*x^2).
a(n) = 2^(n-1)*A074324(n). - M. F. Hasler, Dec 03 2014

Extensions

G.f. and comment corrected, formula added by Klaus Brockhaus, Sep 18 2009

A164265 Partial sums of A162766.

Original entry on oeis.org

4, 7, 19, 28, 64, 91, 199, 280, 604, 847, 1819, 2548, 5464, 7651, 16399, 22960, 49204, 68887, 147619, 206668, 442864, 620011, 1328599, 1860040, 3985804, 5580127, 11957419, 16740388, 35872264, 50221171, 107616799, 150663520, 322850404
Offset: 1

Views

Author

Klaus Brockhaus, Aug 11 2009

Keywords

Crossrefs

Cf. A162766, A164123 (partial sums of A162436).

Programs

  • Magma
    T:=[ n le 2 select 5-n else 3*Self(n-2): n in [1..33] ]; [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..#T]];
    
  • Mathematica
    LinearRecurrence[{1,3,-3},{4,7,19},40] (* Harvey P. Dale, Aug 28 2016 *)
  • PARI
    a(n)=if(n%2,15,7)*3^(n\2)\2-3 \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = 3*a(n-2)+7 for n > 2; a(1) = 4, a(2) = 7.
a(n) = (11-4*(-1)^n)*3^(1/4*(2*n-1+(-1)^n))/2-7/2.
G.f.: x*(4+3*x)/((1-x)*(1-3*x^2)).
Previous Showing 11-12 of 12 results.