cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A163480 Row 0 of A163334 (column 0 of A163336).

Original entry on oeis.org

0, 1, 2, 15, 16, 17, 18, 19, 20, 141, 142, 143, 144, 145, 146, 159, 160, 161, 162, 163, 164, 177, 178, 179, 180, 181, 182, 1275, 1276, 1277, 1278, 1279, 1280, 1293, 1294, 1295, 1296, 1297, 1298, 1311, 1312, 1313, 1314, 1315, 1316, 1437, 1438, 1439
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Cf. A163481 (Y axis), A037314 (Z-order X axis).
Coordinates: A163528, A163529.

Programs

  • PARI
    a(n) = my(v=digits(n,3),s=Mod(0,2)); for(i=1,#v, if(s,v[i]+=6); s+=v[i]); fromdigits(v,9); \\ Kevin Ryde, Sep 29 2020

Formula

a(n) = A163332(A037314(n)). - Kevin Ryde, Sep 29 2020

A163481 Row 0 of A163336 (column 0 of A163334).

Original entry on oeis.org

0, 5, 6, 47, 48, 53, 54, 59, 60, 425, 426, 431, 432, 437, 438, 479, 480, 485, 486, 491, 492, 533, 534, 539, 540, 545, 546, 3827, 3828, 3833, 3834, 3839, 3840, 3881, 3882, 3887, 3888, 3893, 3894, 3935, 3936, 3941, 3942, 3947, 3948, 4313, 4314, 4319
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Cf. A163480 (X axis), A208665 (Z-order Y axis).

Programs

  • PARI
    a(n) = my(v=digits(n,3),s=Mod(0,2)); for(i=1,#v, s+=v[i]; v[i]=3*v[i]+if(s,2)); fromdigits(v,9); \\ Kevin Ryde, Oct 06 2020

Formula

From Kevin Ryde, Oct 06 2020: (Start)
a(n) = A163332(A208665(n)), including at n=0 by reckoning A208665(0)=0.
a(n) = 3*A163480(n) + (2 if n odd).
(End)

A163343 Central diagonal of A163334 and A163336.

Original entry on oeis.org

0, 4, 8, 44, 40, 36, 72, 76, 80, 404, 400, 396, 360, 364, 368, 332, 328, 324, 648, 652, 656, 692, 688, 684, 720, 724, 728, 3644, 3640, 3636, 3600, 3604, 3608, 3572, 3568, 3564, 3240, 3244, 3248, 3284, 3280, 3276, 3312, 3316, 3320, 2996, 2992, 2988
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Comments

It is easy to see by induction that these terms are always divisible by 4.

Crossrefs

Peano curve axes: A163480, A163481.

Programs

  • PARI
    a(n) = my(v=digits(n,3),s=Mod(0,2)); for(i=1,#v, if(s,v[i]=2-v[i]); s+=v[i]); fromdigits(v,9)<<2; \\ Kevin Ryde, Nov 06 2020

Formula

a(n) = 4*A163344(n).
a(n) = A163332(A338086(n)) = A338086(A128173(n)). - Kevin Ryde, Nov 06 2020

A334792 Let L_0 = (0, 1, 2, ...); for k = 1, 2, ..., L_k is obtained by splitting L_{k-1} into runs of k! terms and reversing even-indexed runs; {a(n)} is the limit of L_k as k tends to infinity.

Original entry on oeis.org

0, 1, 3, 2, 4, 5, 10, 11, 9, 8, 6, 7, 12, 13, 15, 14, 16, 17, 22, 23, 21, 20, 18, 19, 43, 42, 44, 45, 47, 46, 41, 40, 38, 39, 37, 36, 31, 30, 32, 33, 35, 34, 29, 28, 26, 27, 25, 24, 48, 49, 51, 50, 52, 53, 58, 59, 57, 56, 54, 55, 60, 61, 63, 62, 64, 65, 70, 71
Offset: 0

Views

Author

Rémy Sigrist, May 11 2020

Keywords

Comments

A003188 can be obtained in the same manner by considering runs of 2^k terms.
A163332 can be obtained in the same manner by considering runs of 3^k terms.
This sequence is a permutation of the nonnegative integers.

Examples

			L_0 = (0, 1, 2, 3, 4, 5, ...)
L_1 = (0, 1, 2, 3, 4, 5, ...)
L_2 = (0, 1, 3, 2, 4, 5, ...)
As 5 < k! for k > 2, we have:
- a(0) = 0,
- a(1) = 1,
- a(2) = 3,
- a(3) = 2,
- a(4) = 4,
- a(5) = 5.
		

Crossrefs

Programs

  • PARI
    a(n) = { for (k=1, oo, if (n
    				
Previous Showing 11-14 of 14 results.