cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A163481 Row 0 of A163336 (column 0 of A163334).

Original entry on oeis.org

0, 5, 6, 47, 48, 53, 54, 59, 60, 425, 426, 431, 432, 437, 438, 479, 480, 485, 486, 491, 492, 533, 534, 539, 540, 545, 546, 3827, 3828, 3833, 3834, 3839, 3840, 3881, 3882, 3887, 3888, 3893, 3894, 3935, 3936, 3941, 3942, 3947, 3948, 4313, 4314, 4319
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Cf. A163480 (X axis), A208665 (Z-order Y axis).

Programs

  • PARI
    a(n) = my(v=digits(n,3),s=Mod(0,2)); for(i=1,#v, s+=v[i]; v[i]=3*v[i]+if(s,2)); fromdigits(v,9); \\ Kevin Ryde, Oct 06 2020

Formula

From Kevin Ryde, Oct 06 2020: (Start)
a(n) = A163332(A208665(n)), including at n=0 by reckoning A208665(0)=0.
a(n) = 3*A163480(n) + (2 if n odd).
(End)

A165466 Squared distance between n's location in A163334 array and A163359 array.

Original entry on oeis.org

0, 2, 2, 2, 2, 10, 10, 2, 0, 0, 2, 10, 20, 10, 10, 18, 32, 32, 50, 74, 100, 100, 72, 50, 32, 50, 50, 34, 20, 20, 16, 16, 16, 10, 4, 4, 2, 4, 8, 8, 8, 10, 20, 18, 20, 20, 26, 50, 50, 40, 20, 20, 20, 20, 32, 32, 34, 40, 58, 74, 100, 74, 74, 80, 80, 80, 52, 52, 50, 34, 34, 32
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2009

Keywords

Comments

Equivalently, squared distance between n's location in A163336 array and A163357 array. See example at A166043.

Crossrefs

Positions of zeros: A165467. See also A166043, A165464, A163897, A163900.

Formula

a(n) = A000290(abs(A163529(n)-A059253(n))) + A000290(abs(A163528(n)-A059252(n))).

A166042 Permutation of nonnegative integers: a(n) tells which integer is in the same position in the square array A163334 as where n is located in the array A163357.

Original entry on oeis.org

0, 1, 4, 5, 6, 47, 46, 7, 8, 45, 44, 9, 14, 3, 2, 15, 16, 13, 12, 17, 18, 19, 22, 23, 24, 25, 28, 29, 42, 11, 10, 43, 40, 37, 36, 41, 30, 31, 34, 35, 72, 73, 76, 77, 66, 71, 70, 67, 68, 57, 56, 69, 38, 39, 50, 51, 52, 49, 48, 53, 54, 55, 58, 59, 60, 425, 424, 61, 62, 63, 422
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2009

Keywords

Examples

			The top left 8 X 8 corner of A163357:
   0  1 14 15 16 19 20 21
   3  2 13 12 17 18 23 22
   4  7  8 11 30 29 24 25
   5  6  9 10 31 28 27 26
  58 57 54 53 32 35 36 37
  59 56 55 52 33 34 39 38
  60 61 50 51 46 45 40 41
  63 62 49 48 47 44 43 42
The top left 9 X 9 corner of A163334:
   0  1  2 15 16 17 18 19 20
   5  4  3 14 13 12 23 22 21
   6  7  8  9 10 11 24 25 26
  47 46 45 44 43 42 29 28 27
  48 49 50 39 40 41 30 31 32
  53 52 51 38 37 36 35 34 33
  54 55 56 69 70 71 72 73 74
  59 58 57 68 67 66 77 76 75
  60 61 62 63 64 65 78 79 80
9 is in position (3,2) in A163357, while A163334(3,2) = 45. Thus a(9) = 45.
		

Crossrefs

Inverse: A166041. a(n) = A163334(A163358(n)) = A163336(A163360(n)). Fixed points: A165465. Cf. also A166044.

A163342 Row sums of A163334 and A163336.

Original entry on oeis.org

0, 6, 12, 72, 132, 186, 240, 300, 360, 906, 1452, 1992, 2532, 3078, 3624, 4116, 4608, 5094, 5580, 6072, 6564, 7110, 7656, 8196, 8736, 9282, 9828, 14748, 19668, 24582, 29496, 34416, 39336, 44202, 49068, 53928, 58788, 63654, 68520, 73440, 78360
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Comments

All terms seem to be divisible by 6. Cf. A163479.

A163343 Central diagonal of A163334 and A163336.

Original entry on oeis.org

0, 4, 8, 44, 40, 36, 72, 76, 80, 404, 400, 396, 360, 364, 368, 332, 328, 324, 648, 652, 656, 692, 688, 684, 720, 724, 728, 3644, 3640, 3636, 3600, 3604, 3608, 3572, 3568, 3564, 3240, 3244, 3248, 3284, 3280, 3276, 3312, 3316, 3320, 2996, 2992, 2988
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Comments

It is easy to see by induction that these terms are always divisible by 4.

Crossrefs

Peano curve axes: A163480, A163481.

Programs

  • PARI
    a(n) = my(v=digits(n,3),s=Mod(0,2)); for(i=1,#v, if(s,v[i]=2-v[i]); s+=v[i]); fromdigits(v,9)<<2; \\ Kevin Ryde, Nov 06 2020

Formula

a(n) = 4*A163344(n).
a(n) = A163332(A338086(n)) = A338086(A128173(n)). - Kevin Ryde, Nov 06 2020

A165464 Squared distance between n's location in A163334 array and A163357 array.

Original entry on oeis.org

0, 0, 2, 4, 2, 4, 2, 0, 0, 2, 2, 4, 4, 4, 2, 0, 0, 2, 2, 4, 4, 2, 0, 0, 0, 0, 2, 4, 4, 2, 8, 10, 16, 16, 4, 2, 2, 10, 16, 10, 8, 8, 20, 20, 20, 18, 18, 32, 18, 10, 4, 2, 4, 10, 8, 2, 2, 10, 10, 4, 4, 4, 2, 10, 16, 26, 20, 10, 2, 4, 10, 18, 32, 32, 50, 52, 52, 34, 40, 58, 80, 80, 106, 146
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2009

Keywords

Comments

Equivalently, squared distance between n's location in A163336 array and A163359 array. See example at A166041.

Crossrefs

Positions of zeros: A165465. See also A165466, A163897, A163900.

Formula

a(n) = A000290(abs(A163529(n)-A059252(n))) + A000290(abs(A163528(n)-A059253(n))).

A163344 Central diagonal of A163334 and A163336 divided by 4.

Original entry on oeis.org

0, 1, 2, 11, 10, 9, 18, 19, 20, 101, 100, 99, 90, 91, 92, 83, 82, 81, 162, 163, 164, 173, 172, 171, 180, 181, 182, 911, 910, 909, 900, 901, 902, 893, 892, 891, 810, 811, 812, 821, 820, 819, 828, 829, 830, 749, 748, 747, 738, 739, 740, 731, 730, 729, 1458
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

a(n) = A163343(n)/4.

A163479 Row sums of A163334 and A163336 divided by 6.

Original entry on oeis.org

0, 1, 2, 12, 22, 31, 40, 50, 60, 151, 242, 332, 422, 513, 604, 686, 768, 849, 930, 1012, 1094, 1185, 1276, 1366, 1456, 1547, 1638, 2458, 3278, 4097, 4916, 5736, 6556, 7367, 8178, 8988, 9798, 10609, 11420, 12240, 13060, 13879, 14698, 15518, 16338
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Formula

a(n) = floor(A163342(n)/6) (floor probably unnecessary).

A163357 Hilbert curve in N X N grid, starting rightwards from the top-left corner, listed by descending antidiagonals.

Original entry on oeis.org

0, 1, 3, 14, 2, 4, 15, 13, 7, 5, 16, 12, 8, 6, 58, 19, 17, 11, 9, 57, 59, 20, 18, 30, 10, 54, 56, 60, 21, 23, 29, 31, 53, 55, 61, 63, 234, 22, 24, 28, 32, 52, 50, 62, 64, 235, 233, 25, 27, 35, 33, 51, 49, 67, 65, 236, 232, 230, 26, 36, 34, 46, 48, 68, 66, 78, 239, 237, 231
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Examples

			The top left 8 X 8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
   0  1 14 15 16 19 20 21
   3  2 13 12 17 18 23 22
   4  7  8 11 30 29 24 25
   5  6  9 10 31 28 27 26
  58 57 54 53 32 35 36 37
  59 56 55 52 33 34 39 38
  60 61 50 51 46 45 40 41
  63 62 49 48 47 44 43 42
		

Crossrefs

Transpose: A163359. Inverse: A163358. One-based version: A163361. Row sums: A163365. Row 0: A163482. Column 0: A163483. Central diagonal: A062880. See also A163334 & A163336 for the Peano curve.

Programs

  • Mathematica
    b[{n_, k_}, {m_}] := (A[k, n] = m-1);
    MapIndexed[b, List @@ HilbertCurve[4][[1]]];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)

Formula

a(n) = A163355(A054238(n)).

Extensions

Links to further derived sequences added by Antti Karttunen, Sep 21 2009

A054238 Array read by downward antidiagonals: T(i,j) = bits of binary expansion of i interleaved with that of j.

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 5, 6, 9, 10, 16, 7, 12, 11, 32, 17, 18, 13, 14, 33, 34, 20, 19, 24, 15, 36, 35, 40, 21, 22, 25, 26, 37, 38, 41, 42, 64, 23, 28, 27, 48, 39, 44, 43, 128, 65, 66, 29, 30, 49, 50, 45, 46, 129, 130, 68, 67, 72, 31, 52, 51, 56, 47, 132, 131, 136, 69, 70, 73, 74
Offset: 0

Views

Author

Marc LeBrun, Feb 07 2000

Keywords

Comments

Inverse of sequence A054239 considered as a permutation of the nonnegative integers.
Permutation of nonnegative integers. Can be used as natural alternate number casting for pairs/tables (vs. usual diagonalization).
This array is a Z-order curve in an N x N grid. - Max Barrentine, Sep 24 2015
Each row n of this array is the lexicographically earliest sequence such that no term occurs in a previous row, no three terms form an arithmetic progression, and the k-th term in the n-th row is equal to the k-th term in row 0 plus some constant (specifically, T(n,k) = T(0,k) + A062880(n)). - Max Barrentine, Jul 20 2016

Examples

			From _Philippe Deléham_, Oct 18 2011: (Start)
The array starts in row n=0 with columns k >= 0 as follows:
   0  1  4  5 16 17 20 21 ...
   2  3  6  7 18 19 22 23 ...
   8  9 12 13 24 25 28 29 ...
  10 11 14 15 26 27 30 31 ...
  32 33 36 37 48 49 52 53 ...
  34 35 38 39 50 51 54 55 ...
  40 41 44 45 56 57 60 61 ...
  42 43 46 47 58 59 62 63 ...
(End)
T(6,5)=57 because 1.1.0. (6) merged with .1.0.1 (5) is 111001 (57). [Corrected by _Georg Fischer_, Jan 21 2022]
		

Crossrefs

Cf. A000695 (row n=0), A062880 (column k=0), A001196 (main diagonal).
Cf. A059905, A059906, A346453 (by upwards antidiagonals).
See also A163357 and A163334 for other fractal curves in N x N grids.

Programs

  • Maple
    N:= 4: # to get the first 2^(2N+1)+2^N terms
    G:= 1/(1-y)/(1-x)*(add(2^(2*i+1)*x^(2^i)/(1+x^(2^i)),i=0..N) + add(2^(2*i)*y^(2^i)/(1+y^(2^i)),i=0..N)):
    S:= mtaylor(G,[x=0,y=0],2^(N+1)):
    seq(seq(coeff(coeff(S,x,i),y,m-i),i=0..m),m=0..2^(N+1)-1); # Robert Israel, Jul 21 2016
  • Mathematica
    Table[Total@ Map[FromDigits[#, 2] &, Insert[#, 0, {-1, -1}] &@ Map[Riffle[IntegerDigits[#, 2], 0, 2] &, {n - k, k}]], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 21 2016 *)

Formula

T(n,k) = A000695(k) + 2*A000695(n). - Philippe Deléham, Oct 18 2011
From Robert Israel, Jul 21 2016: (Start)
G.f. of array: g(x,y) = (1/(1-x)*(1-y)) * Sum_{i>=0}
(2^(2*i+1)*x^(2^i)/(1+x^(2^i)) + 2^(2*i)*y^(2^i)/(1+y^(2^i))).
T(2*n+i,2*k+j) = 4*T(n,k) + 2*i+j for i,j in {0,1}. (End)
Previous Showing 11-20 of 36 results. Next