cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A238099 The stonemason's problem: numbers n such that n^2 is the sum of more than three consecutive cubes, the cube 1 being disallowed.

Original entry on oeis.org

312, 315, 323, 504, 588, 720, 2079, 2170, 2940, 4472, 4914, 5187, 5880, 5984, 6630, 7497, 8721, 8778, 9360, 10296, 10695, 11024, 13104, 14160, 16296, 16380, 18333, 18810, 22022, 22330, 23247, 31248, 36729, 42021, 43065, 43309, 49665
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2014

Keywords

Comments

A subsequence of both A126200 and A163393.

Examples

			312^2 = 97344 = 14^3 + 15^3 + ... + 25^3.
		

Crossrefs

Programs

  • Mathematica
    nn = 500; t = Table[n^3, {n, 2, nn}]; t2 = Table[Total[Take[t, {i, j}]], {i, nn - 1}, {j, i + 3, nn - 1}]; t3 = Select[Union[Flatten[t2]], # <= nn^3 &]; Select[t3, IntegerQ[#^(1/2)] &]^(1/2) (* T. D. Noe, Feb 25 2014 *)
    nn=1000;With[{c=Range[2,nn]^3},Sort[Select[Sqrt[#]&/@ Flatten[ Table[ Total/@ Partition[c,n,1],{n,4,nn}]],IntegerQ]]] (* Harvey P. Dale, Apr 28 2014 *)
  • PARI
    list(lim)=my(v=List(),L2=(lim\=1)^2,s,t); for(n=25,sqrtnint(lim^2\3,3)+1, s=3*n^3 - 9*n^2 + 15*n - 9; forstep(k=n-3,2,-1, s+=k^3; if(s>L2, break); if(issquare(s,&t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Nov 13 2016

A343409 Numbers whose square is the sum of one or more consecutive nonnegative cubes.

Original entry on oeis.org

0, 1, 3, 6, 8, 10, 15, 21, 27, 28, 36, 45, 55, 64, 66, 78, 91, 105, 120, 125, 136, 153, 171, 190, 204, 210, 216, 231, 253, 276, 300, 312, 315, 323, 325, 343, 351, 378, 406, 435, 465, 496, 504, 512, 528, 561, 588, 595, 630, 666, 703, 720, 729, 741, 780, 820
Offset: 1

Views

Author

Lamine Ngom, Apr 14 2021

Keywords

Comments

Roots of square terms of A217843. Sequence contains (but is not limited to) cubes (A000578) and triangular numbers (A000217).

Examples

			8 is a term because 8^2 = 64 = 4^3.
10 is a term because 10^2 = 100 = 1^3 + 2^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    M:= floor(N^(2/3)):
    S:= [seq(n^2*(n+1)^2/4, n=0..M)]:
    SD:= {0,seq(seq(S[i]-S[j],j=1..i-1),i=1..M+1)}:
    Q:= select(t -> t <= N^2 and issqr(t),SD):
    sort(convert(map(sqrt,Q),list)); # Robert Israel, Sep 11 2023

Formula

Union of A000217 and A126200.
Previous Showing 11-12 of 12 results.